Patents by Inventor Robert Anthony Schaut

Robert Anthony Schaut has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10273048
    Abstract: Delamination resistant glass containers with heat-tolerant coatings are disclosed. In one embodiment, a glass container may include a glass body having an interior surface, an exterior surface and a wall thickness extending from the exterior surface to the interior surface. At least the interior surface of the glass body is delamination resistant. The glass container may further include a heat-tolerant coating positioned on at least a portion of the exterior surface of the glass body. The heat-tolerant coating may be thermally stable at temperatures greater than or equal to 260° C. for 30 minutes.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: April 30, 2019
    Assignee: CORNING INCORPORATED
    Inventors: Andrei Gennadyevich Fadeev, Theresa Chang, Dana Craig Bookbinder, Santona Pal, Chandan Kumar Saha, Steven Edward DeMartino, Christopher Lee Timmons, John Stephen Peanasky, Robert Anthony Schaut, Paul Stephen Danielson, Melinda Ann Drake, Robert Michael Morena, Kaveh Adib
  • Publication number: 20190119149
    Abstract: The embodiments described herein relate to chemically and mechanically durable glass compositions and glass articles formed from the same. In an embodiment the glass composition may include from about 67 mol. % to about 80 mol. % SiO2; from about 3 mol. % to about 13 mol. % alkaline earth oxide; from about 2 mol. % to about 10 mol. % Al2O3; from about 2 mol. % to about 18 mol. % alkali oxide, wherein the alkali oxide comprises non-zero amounts of Na2O; from 0 mol. % to about 4 mol. % B2O3; and from about 0.01 mol. % to about 1 mol. % of a fining agent.
    Type: Application
    Filed: December 21, 2018
    Publication date: April 25, 2019
    Applicant: CORNING INCORPORATED
    Inventors: Paul Stephen Danielson, Steven Edward DeMartino, Melinda Ann Drake, Robert Michael Morena, Santona Pal, Robert Anthony Schaut
  • Publication number: 20190084875
    Abstract: Glass pharmaceutical packages comprising glass containers are disclosed. In embodiments, a coated glass pharmaceutical package includes a glass container formed from one of a borosilicate glass composition that meets Type 1 criteria according to USP <660> or an alkali aluminosilicate glass having a Class HGA 1 hydrolytic resistance when tested according to the ISO 720-1985 testing standard. A lubricous coating may be positioned on at least a portion of the exterior surface of the glass container. The portion of the coated glass pharmaceutical package with the lubricous coating has a coefficient of friction that is at least 20% less than an uncoated glass pharmaceutical package. A horizontal compression strength of the portion of the coated glass pharmaceutical package with the lubricous coating may be at least 10% greater than an uncoated glass pharmaceutical package.
    Type: Application
    Filed: November 9, 2018
    Publication date: March 21, 2019
    Applicant: CORNING INCORPORATED
    Inventors: Theresa Chang, Paul Stephen Danielson, Steven Edward DeMartino, Andrei Gennadyevich Fadeev, Robert Michael Morena, Santona Pal, John Stephen Peanasky, Robert Anthony Schaut, Christopher Lee Timmons, Natesan Venkataraman, Ronald Luce Verkleeren
  • Publication number: 20190077702
    Abstract: A delamination resistant glass pharmaceutical container may include a glass body comprising a borosilicate glass having a Type 1 chemical durability according to USP <660>. At least an inner surface of the glass body may have a delamination factor less than or equal to 10. A thermally stable coating may be positioned around at least a portion of the outer surface of the glass body. The thermally stable coating may be an outermost coating on the outer surface of the glass body and the outer surface of the glass body with the thermally stable coating has a coefficient of friction less than or equal to 0.7. The thermally stable coating comprising at least one of a metal nitride coating, a metal oxide coating, a metal sulfide coating, SiO2, diamond-like carbon, graphene, and a carbide coating.
    Type: Application
    Filed: November 9, 2018
    Publication date: March 14, 2019
    Applicant: CORNING INCORPORATED
    Inventors: Theresa Chang, Paul Stephen Danielson, Steven Edward DeMartino, Andrei Gennadyevich Fadeev, Robert Michael Morena, Santona Pal, John Stephen Peanasky, Robert Anthony Schaut, Christopher Lee Timmons, Natesan Venkataraman, Ronald Luce Verkleeren
  • Patent number: 10196298
    Abstract: The embodiments described herein relate to chemically and mechanically durable glass compositions and glass articles formed from the same. In another embodiment, a glass composition may include from about 70 mol. % to about 80 mol. % SiO2; from about 3 mol. % to about 13 mol. % alkaline earth oxide; X mol. % Al2O3; and Y mol. % alkali oxide. The alkali oxide may include Na2O in an amount greater than about 8 mol. %. A ratio of Y:X may be greater than 1 and the glass composition may be free of boron and compounds of boron. In some embodiments, the glass composition may also be free of phosphorous and compounds of phosphorous. Glass articles formed from the glass composition may have at least a class S3 acid resistance according to DIN 12116, at least a class A2 base resistance according to ISO 695, and a type HGA1 hydrolytic resistance according to ISO 720.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: February 5, 2019
    Assignee: CORNING INCORPORATED
    Inventors: Paul Stephen Danielson, Steven Edward DeMartino, Melinda Ann Drake, Robert Michael Morena, Santona Pal, Robert Anthony Schaut
  • Patent number: 10196295
    Abstract: A method of making a glass sheet comprises laminating a high CTE core glass to a low CTE clad glass at high temperatures and allowing the laminate to cool creating compressive stress in the clad glass, and then ion exchanging the laminate to increase the compressive stress in the outer near surface regions of the clad glass. The core glass may include ions that exchange with ion in the clad glass to increase the compressive stress in inner surface regions of the clad glass adjacent to the clad glass/core glass interfaces. The glass laminate may be formed and laminated using a fusion forming and laminating process and fusion formable and ion exchangeable glass compositions.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: February 5, 2019
    Assignee: CORNING INCORPORATED
    Inventors: Suresh Thakordas Gulati, Michael Thomas Gallagher, Timothy James Kiczenski, Robert Anthony Schaut, Natesan Venkataraman
  • Publication number: 20190025141
    Abstract: Prism coupling systems and methods for characterizing curved parts are disclosed. A coupling surface of a coupling prism is interfaced to the curved outer surface of the curved part to define a coupling interface. Measurement light is directed through the coupling prism and to the interface, wherein the measurement light has a width of 3 mm or less. TE and TM mode spectra reflected from the interface are digitally captured. These mode spectra are processed to determine at least one characteristic of the curved part, such as the stress profile, compressive stress, depth of layer, refractive index profile and birefringence.
    Type: Application
    Filed: September 21, 2018
    Publication date: January 24, 2019
    Inventors: Anping Liu, Rostislav Vatchev Roussev, Robert Anthony Schaut
  • Publication number: 20190023606
    Abstract: Intermediate to high CTE glass compositions and laminates formed from the same are described. The glasses described herein have properties, such as liquidus viscosity or liquidus temperature, which make them particularly well suited for use in fusion forming processes, such as the fusion down draw process and/or the fusion lamination process. Further, the glass composition may be used in a laminated glass article, such as a laminated glass article formed by a fusion laminate process, to provide strengthened laminates via clad compression as a result of CTE mismatch between the core glass and clad glass.
    Type: Application
    Filed: September 26, 2018
    Publication date: January 24, 2019
    Inventors: Timothy James Kiczenski, John Christopher Mauro, Michelle Diane Pierson-Stull, Robert Anthony Schaut, Natesan Venkateraman
  • Publication number: 20180362398
    Abstract: A strengthened glass container or vessel such as, but not limited to, vials for holding pharmaceutical products or vaccines in a hermetic and/or sterile state. The strengthened glass container undergoes a strengthening process that produces compression at the surface and tension within the container wall. The strengthening process is designed such that the tension within the wall is great enough to ensure catastrophic failure of the container, thus rendering the product unusable, should sterility be compromised by a through-wall crack. The tension is greater than a threshold central tension, above which catastrophic failure of the container is guaranteed, thus eliminating any potential for violation of pharmaceutical integrity.
    Type: Application
    Filed: August 23, 2018
    Publication date: December 20, 2018
    Applicant: CORNING INCORPORATED
    Inventors: Steven Edward DeMartino, Robert Anthony Schaut
  • Patent number: 10156488
    Abstract: Prism coupling systems and methods for characterizing curved parts are disclosed. A coupling surface of a coupling prism is interfaced to the curved outer surface of the curved part to define a coupling interface. Measurement light is directed through the coupling prism and to the interface, wherein the measurement light has a width of 3 mm or less. TE and TM mode spectra reflected from the interface are digitally captured. These mode spectra are processed to determine at least one characteristic of the curved part, such as the stress profile, compressive stress, depth of layer, refractive index profile and birefringence.
    Type: Grant
    Filed: August 29, 2013
    Date of Patent: December 18, 2018
    Assignee: CORNING INCORPORATED
    Inventors: Anping Liu, Rostislav Vatchev Roussev, Robert Anthony Schaut
  • Patent number: 10117806
    Abstract: The glass containers described herein are resistant to delamination, have improved strength, and increased damage resistance. In one embodiment, a glass container may include a body having an inner surface, an outer surface and a wall thickness extending between the outer surface and the inner surface. At least the inner surface of the body may have a delamination factor less than or equal to 10. The body may also have a compressively stressed layer extending from the outer surface of the body into the wall thickness. The compressively stressed layer may have a surface compressive stress greater than or equal to 150 MPa. A lubricous coating may be positioned around at least a portion of the outer surface of the body, such that the outer surface of the body with the lubricous coating has a coefficient of friction less than or equal to 0.7.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: November 6, 2018
    Assignee: CORNING INCORPORATED
    Inventors: Theresa Chang, Paul Stephen Danielson, Steven Edward DeMartino, Andrei Gennadyevich Fadeev, Robert Michael Morena, Santona Pal, John Stephen Peanasky, Robert Anthony Schaut, Christopher Lee Timmons, Natesan Venkataraman, Ronald Luce Verkleeren, Dana Craig Bookbinder
  • Patent number: 10112865
    Abstract: Intermediate to high CTE glass compositions and laminates formed from the same are described. The glasses described herein have properties, such as liquidus viscosity or liquidus temperature, which make them particularly well suited for use in fusion forming processes, such as the fusion down draw process and/or the fusion lamination process. Further, the glass composition may be used in a laminated glass article, such as a laminated glass article formed by a fusion laminate process, to provide strengthened laminates via clad compression as a result of CTE mismatch between the core glass and clad glass.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: October 30, 2018
    Assignee: Corning Incorporated
    Inventors: Timothy James Kiczenski, John Christopher Mauro, Michelle Diane Pierson-Stull, Robert Anthony Schaut, Natesan Venkataraman
  • Publication number: 20180244420
    Abstract: Embodiments of glass containers resistant to delamination and methods for forming the same are disclosed. According to one embodiment, a delamination resistant glass container may include a glass article having a body extending between an interior surface and an exterior surface. The body defines an interior volume. The body may include an interior region extending from 10 nm below the interior surface of the body into a thickness of the body. The interior region has a persistent layer homogeneity such that the body is resistant to delamination.
    Type: Application
    Filed: May 1, 2018
    Publication date: August 30, 2018
    Applicant: CORNING INCORPORATED
    Inventors: Kaveh Adib, Paul Stephen Danielson, James Patrick Hamilton, Robert Michael Morena, John Stephen Peanasky, Robert Anthony Schaut, Susan Lee Schiefelbein
  • Patent number: 10023495
    Abstract: The glass containers described herein have at least two performance attributes selected from resistance to delamination, improved strength, and increased damage resistance. In one embodiment, a glass container may include a body having an inner surface, an outer surface and a wall thickness extending between the outer surface and the inner surface. A compressively stressed layer may extend from the outer surface of the body into the wall thickness. The compressively stressed layer may have a surface compressive stress greater than or equal to 150 MPa. A lubricous coating may be positioned around at least a portion of the outer surface of the body. The outer surface of the body with the lubricous coating may have a coefficient of friction less than or equal to 0.7.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: July 17, 2018
    Assignee: CORNING INCORPORATED
    Inventors: Theresa Chang, Paul Stephen Danielson, Steven Edward DeMartino, Andrei Gennadyevich Fadeev, Robert Michael Morena, Santona Pal, John Stephen Peanasky, Robert Anthony Schaut, Christopher Lee Timmons, Natesan Venkataraman, Ronald Luce Verkleeren, Dana Craig Bookbinder
  • Publication number: 20180155236
    Abstract: According to embodiments disclosed herein, light-scattering laminated glass articles may include a first glass layer, a second glass layer, and a light-scattering component. The first glass layer may be formed from a first glass composition. The second glass layer may be formed from a second glass composition and fused to the first glass layer. The light-scattering component may be disposed at an interface of the first glass layer and the second glass layer. The light-scattering component may include a different composition or material phase than the first glass layer and the second glass layer. Also disclosed herein are methods for producing light-scattering laminated glass articles.
    Type: Application
    Filed: June 1, 2016
    Publication date: June 7, 2018
    Inventors: Megan Aurora DeLamielleure, Paul Bennett Dohn, Timothy James Kiczenski, Irene Mona Peterson, Robert Anthony Schaut, Elizabeth Mary Sturdevant, Natesan Venkataraman
  • Patent number: 9988174
    Abstract: Embodiments of glass containers resistant to delamination and methods for forming the same are disclosed. According to one embodiment, a delamination resistant glass container may include a glass article having a body extending between an interior surface and an exterior surface. The body defines an interior volume. The body may include an interior region extending from 10 nm below the interior surface of the body into a thickness of the body. The interior region has a persistent layer homogeneity such that the body is resistant to delamination.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: June 5, 2018
    Assignee: CORNING INCORPORATED
    Inventors: Kaveh Adib, Paul Stephen Danielson, James Patrick Hamilton, Robert Michael Morena, John Stephen Peanasky, Robert Anthony Schaut, Susan Lee Schiefelbein
  • Publication number: 20180147114
    Abstract: A glass pharmaceutical package having a glass composition of 68.00 mol % to 81.00 mol % SiO2, from 4.00 mol % to 11.00 mol % Al2O3, from 0.10 mol % to 16.00 mol % Li2O, from 0.10 mol % to 12.00 mol % Na2O, from 0.00 mol % to 5.00 mol % K2O, from 0.10 mol % to 8.00 mol % MgO, from 0.10 mol % to 5.00 mol % CaO, from 0.00 mol % to 0.20 mol % fining agent. The glass pharmaceutical package is delamination resistant, and has class 1 or class 2 chemical durability in acid, base, and water. The glass pharmaceutical package may be substantially free of B2O3, SrO, BaO, and ZrO2.
    Type: Application
    Filed: November 29, 2017
    Publication date: May 31, 2018
    Applicant: CORNING INCORPORATED
    Inventors: Steven Edward DeMartino, Nadja Teresia Lönnroth, Lina Ma, Robert Anthony Schaut, Charlene Marie Smith, Zhongzhi Tang, Jamie Todd Westbrook
  • Publication number: 20180100846
    Abstract: A method including obtaining glass containers, and adding a solvent to 5.0% by volume to less than or equal to 50.0% by volume. Heating to an elevated temperature and cooling to room temperature. The solvent is consolidated and titrated, where an amount of a titrant is an as received titrant volume. Glass containers are etched, and a second solvent is added at 8.0% by volume to less than or equal to 25.0% by volume. The containers are heated to an elevated temperature and cooled to room temperature. The second solvent is consolidated and titrated, where an amount of a titrant is an etched titrant volume. The Chemical Durability Ratio (CDR) of the plurality of glass containers is calculated where: CDR = As ? ? Received ? ? Titrant ? ? Volume Etched ? ? Titrant ? ? Volume .
    Type: Application
    Filed: October 12, 2017
    Publication date: April 12, 2018
    Applicant: CORNING INCORPORATED
    Inventors: Kelly Ann Murphy, Robert Anthony Schaut
  • Publication number: 20180079682
    Abstract: A strengthened glass container or vessel such as, but not limited to, vials for holding pharmaceutical products or vaccines in a hermetic and/or sterile state. The strengthened glass container undergoes a strengthening process that produces compression at the surface and tension within the container wall. The strengthening process is designed such that the tension within the wall is great enough to ensure catastrophic failure of the container, thus rendering the product unusable, should sterility be compromised by a through-wall crack. The tension is greater than a threshold central tension, above which catastrophic failure of the container is guaranteed, thus eliminating any potential for violation of pharmaceutical integrity.
    Type: Application
    Filed: November 16, 2017
    Publication date: March 22, 2018
    Applicant: CORNING INCORPORATED
    Inventors: Steven Edward DeMartino, Robert Anthony Schaut
  • Patent number: 9868664
    Abstract: Glass compositions and glass articles comprising the glass compositions are disclosed. In one embodiment, a glass composition includes from about 65 mol. % to about 70 mol. % SiO2; from about 9 mol. % to about 14 mol. % Al2O3; and from about 0 mol. % to about 11 mol. % B2O3 as glass network formers. The glass composition also includes from about 5 mol. % to less than 10 mol. % alkali oxide R2O, wherein R is at least one of Li, Na, and K. The glass composition also includes from about 3 mol. % to about 11 mol. % of divalent oxide MO, wherein M is at least one of Mg, Ca, Ba, SrO and Zn. The glass composition has a coefficient of thermal expansion which is less than or equal to 55×10-7/° C. and is amenable to strengthening by ion-exchange. The glass composition is well suited for use as the glass cladding layers of a laminated glass article.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: January 16, 2018
    Assignee: Corning Incorporated
    Inventors: Sinue Gomez, Timothy James Kiczenski, John Christopher Mauro, Robert Anthony Schaut, Morten Mattrup Smedskjaer, Natesan Venkataraman