Patents by Inventor Robert B. James

Robert B. James has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100012552
    Abstract: One exemplary embodiment can be a process for producing a gasoline. The process can include contacting a feed having a naphtha and recycling at least a portion of the reaction zone effluent to the one or more reforming reaction zones. Generally, the reformate includes no more than about 15%, by volume, benzene, with a UZM-8 catalyst in one or more reforming reaction zones to produce a reaction zone effluent.
    Type: Application
    Filed: July 18, 2008
    Publication date: January 21, 2010
    Inventors: Robert B. James, JR., Deng-Yang Jan, Robert J. Schmidt
  • Patent number: 7638040
    Abstract: A process for the recovery and purification of a contaminated hydrocarbons, wherein the contamination includes metals, finely divided solids and non-distillable components. The process further includes hydroprocessing the oil to remove deleterious compounds, to produce high quality reusable lubricants, solvents and fuels and to improve the quality of water byproduct.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: December 29, 2009
    Assignee: UOP LLC
    Inventors: Mark Van Wees, Robert B. James, Jr., Tom N. Kalnes, Gavin P. Towler
  • Publication number: 20090000985
    Abstract: A process for the recovery and purification of a contaminated hydrocarbons, wherein the contamination includes metals, finely divided solids and non-distillable components. The process further includes hydroprocessing the oil to remove deleterious compounds, to produce high quality reusable lubricants, solvents and fuels and to improve the quality of water byproduct.
    Type: Application
    Filed: June 29, 2007
    Publication date: January 1, 2009
    Inventors: Mark Van Wees, Robert B. James, JR., Tom N. Kalnes, Gavin P. Towler
  • Patent number: 7128883
    Abstract: The use of two transalkylation catalysts to react aromatic compounds of carbon number nine (and heavier carbon numbers) with benzene to form carbon number eight aromatics is disclosed. The two catalyst system preserves ethyl-group species on the heavier aromatics that would otherwise de-ethylate over most gas-phase transalkylation catalysts to form undesired ethane gas with benzene or toluene. Thus, by using a transalkylation step to save ethylbenzene, a greater yield of para-xylene or other carbon number eight aromatics may be achieved within an integrated complex. An apparatus and process for the two transalkylation catalyst system is disclosed with a liquid-phase unit and a gas-phase unit.
    Type: Grant
    Filed: November 24, 2004
    Date of Patent: October 31, 2006
    Assignee: UOP LLC
    Inventor: Robert B. James, Jr.
  • Patent number: 6958425
    Abstract: The use of transalkylation catalysts to react heavy aromatic compounds of carbon number nine (and heavier carbon numbers) with benzene to form carbon number eight aromatics is disclosed. The catalyst system preserves ethyl-group species on the heavier aromatics that are otherwise de-ethylated over most gas-phase transalkylation catalysts to form undesired ethane gas with benzene or toluene. The catalyst system also promotes methyl-group species transalkylation at selected conditions. Thus, by using the transalkylation system, a greater yield of para-xylene or other carbon number eight aromatics may be achieved overall within an integrated aromatics complex.
    Type: Grant
    Filed: June 13, 2003
    Date of Patent: October 25, 2005
    Assignee: UOP LLC
    Inventors: Paula L. Bogdan, Robert B. James, Jr., Gregory F. Maher
  • Patent number: 6855854
    Abstract: The use of two transalkylation catalysts to react aromatic compounds of carbon number nine (and heavier carbon numbers) with benzene to form carbon number eight aromatics is disclosed. The two catalyst system preserves ethyl-group species on the heavier aromatics that would otherwise de-ethylate over most gas-phase transalkylation catalysts to form undesired ethane gas with benzene or toluene. Thus, by using a transalkylation step to save ethylbenzene, a greater yield of para-xylene or other carbon number eight aromatics may be achieved within an integrated complex. An apparatus and process for the two transalkylation catalyst system is disclosed with a liquid-phase unit and a gas-phase unit.
    Type: Grant
    Filed: June 13, 2003
    Date of Patent: February 15, 2005
    Assignee: UOP LLC
    Inventor: Robert B. James, Jr.
  • Patent number: 6060631
    Abstract: A process for the conversion of plastic to produce a synthetic crude oil by means of separating a liquefied plastic into a lower boiling fraction and a higher boiling fraction containing non-distillable particulate matter which is admixed with a hydrocarbonaceous recycle stream and filtered. The filtered stream having a reduced concentration of finely divided particulate matter and the distillable lower boiling stream together with hydrogen is contacted with a hydro-demetallization catalyst in a hydro-demetallization zone. The effluent from the hydro-demetallization zone is contacted with a hydrocracking catalyst in a hydrocracking zone to produce lower boiling hydrocarbons suitable for use as a synthetic crude oil and to produce gaseous, water-soluble inorganic compounds. A recovered hydrogen-rich gaseous stream is preferably recycled to the hydro-demetallization zone. The gaseous, water-soluble inorganic compounds are removed by scrubbing the hydrocracking zone effluent with an aqueous stream.
    Type: Grant
    Filed: May 28, 1998
    Date of Patent: May 9, 2000
    Assignee: UOP LLC
    Inventors: Robert B. James, Jr., Tom N. Kalnes
  • Patent number: 5969201
    Abstract: A process for the conversion of plastic to produce a synthetic crude oil by means of contacting the plastic with a hydrocarbonaceous recycle stream in a liquefying zone operated at liquefying conditions to produce a liquefied stream of plastic containing non-distillable particulate matter and at least a portion thereof is filtered. The filtered stream having a reduced concentration of finely divided particulate matter and the balance, if any, of the original liquefied stream together with hydrogen is contacted with a hydro-demetallization catalyst in a hydro-demetallization zone at hydro-demetallization conditions to produce gaseous, water-soluble inorganic compounds. The effluent from the hydro-demetallization zone is contacted with a hydrocracking catalyst in a hydrocracking zone to produce lower boiling hydrocarbons suitable for use as a synthetic crude oil. A recovered hydrogen-rich gaseous stream is preferably recycled to the hydro-demetallization zone.
    Type: Grant
    Filed: May 28, 1998
    Date of Patent: October 19, 1999
    Assignee: UOP LLC
    Inventors: Tom N. Kalnes, Robert B. James, Jr.
  • Patent number: 5904838
    Abstract: A process for the simultaneous conversion of waste lubricating oil and pyrolysis oil derived from organic waste to produce a synthetic crude oil by means of contacting the combined feed with a hot hydrogen-rich gaseous stream to increase the temperature of the combined feed to vaporize at least a portion of the distillable organic compounds contained therein which is immediately hydrogenated in a hydrogenation reaction zone. The resulting effluent from the hydrogenation reaction zone is then introduced into a hydroprocessing zone to produce higher hydrogen-content hydrocarbons and to remove heterogeneous components such as sulfur, oxygen, nitrogen and halide, for example. The resulting effluent is cooled and partially condensed to produce a gaseous stream containing hydrogen and gaseous water-soluble inorganic compounds and a liquid stream containing hydrocarbon compounds.
    Type: Grant
    Filed: April 17, 1998
    Date of Patent: May 18, 1999
    Assignee: UOP LLC
    Inventors: Tom N. Kalnes, Robert B. James, Jr.
  • Patent number: 5723706
    Abstract: A process for the conversion of a halogenated organic feedstock to produce a stream of hydrocarbonaceous compounds having an exceedingly low concentration of halogenated organic compounds and an aqueous stream containing hydrogen halide.
    Type: Grant
    Filed: May 30, 1996
    Date of Patent: March 3, 1998
    Assignee: UOP
    Inventors: Robert S. Brasier, Robert B. James, Jr.
  • Patent number: 5552037
    Abstract: An integrated process for simultaneously treating a halogenated organic stream containing less than about 500 ppm by weight of water or water precursors and a halogenated organic stream containing oxygen-containing compounds to produce hydrocarbonaceous compounds having a reduced level of organic halogen and a hydrogen halide stream containing less than about 500 ppm by weight of water.
    Type: Grant
    Filed: September 1, 1994
    Date of Patent: September 3, 1996
    Assignee: UOP
    Inventors: Tom N. Kalnes, Robert B. James, Jr.
  • Patent number: 5401894
    Abstract: A process for the conversion of a halogenated organic feedstock to produce a stream of hydrocarbonaceous compounds having an exceedingly low concentration of halogenated organic compounds and an aqueous stream containing hydrogen halide.
    Type: Grant
    Filed: June 7, 1994
    Date of Patent: March 28, 1995
    Assignee: UOP
    Inventors: Robert S. Brasier, Robert B. James, Jr.
  • Patent number: 5316663
    Abstract: A process to convert organic waste streams containing halide compounds to produce hydrogenated organic compounds and to recover the resulting hydrogen halide as an anhydrous product stream.
    Type: Grant
    Filed: January 13, 1992
    Date of Patent: May 31, 1994
    Assignee: UOP
    Inventor: Robert B. James, Jr.
  • Patent number: 5302282
    Abstract: A process for the production of high quality lube oil blending stock from atmospheric fractionation residue and waste lubricants by means of contacting the waste lubricant with a hot hydrogen-rich gaseous stream to increase the temperature of this feed stream to vaporize at least a portion of the distillable hydrocarbonaceous compounds thereby producing a distillable hydrocarbonaceous stream which is immediately hydrogenated in an integrated hydrogenation zone. The vaporization of the waste oil is also conducted in the presence of an asphalt residue which is produced in the integrated process. The resulting effluent from the integrated hydrogenation zone provides at least one high quality lube oil blending stock stream.
    Type: Grant
    Filed: March 5, 1992
    Date of Patent: April 12, 1994
    Assignee: UOP
    Inventors: Tom N. Kalnes, Steven P. Lankton, Robert B. James, Jr.
  • Patent number: 5244565
    Abstract: A process for the production of distillate hydrocarbon from atmospheric fractionation residue and waste lubricants by means of contacting the waste lubricant with a hot hydrogen-rich gaseous stream to increase the temperature of this feed stream to vaporize at least a portion of the distillable hydrocarbonaceous compounds thereby producing a distillable hydrocarbonaceous stream which is immediately hydrogenated in an integrated hydrogenation zone. The vaporization of the waste oil is also conducted in the presence of a vacuum fractionation residue which is produced in the integrated process. The resulting effluent from the integrated hydrogenation zone and a distillable hydrocarbon stream recovered from the atmospheric fraction residue is catalytically converted to produce lower molecular weight hydrocarbon compounds.
    Type: Grant
    Filed: December 26, 1991
    Date of Patent: September 14, 1993
    Assignee: UOP
    Inventors: Steven P. Lankton, Tom N. Kalnes, Robert B. James, Jr.
  • Patent number: 5176816
    Abstract: An integrated process for the production of a hydrogenated distillable hydrocarbonaceous product from a temperature-sensitive hydrocarbonaceous stream containing a non-distillable component by the utilization of a hot hydrogen flash zone and a secondary separation zone to achieve a high yield of hydrogenated distillable hydrocarbonaceous product.
    Type: Grant
    Filed: April 2, 1992
    Date of Patent: January 5, 1993
    Assignee: UOP
    Inventors: Steven P. Lankton, Robert B. James, Jr.
  • Patent number: 5102531
    Abstract: A process for treating a hydrocarbonaceous feed stream containing a non-distillable component to produce a distillable hydrocarbonaceous product and a heavy product comprising the non-distillable component while minimizing thermal degradation of the hydrocarbonaceous feed stream which process comprises the steps of: (a) contacting the hydrocarbonaceous feed stream with a hot first hydrogen-rich gaseous stream having a temperature greater than the hydrocarbonaceous feed stream in a flash zone at flash conditions without indirect heat exchange thereby increasing the temperature of the hydrocarbonaceous feed stream and vaporizing at least a portion thereof to provide a hydrocarbonaceous vapor stream comprising hydrogen and a heavy product comprising the non-distillable component; (b) removing the hydrocarbonaceous vapor stream comprising hydrogen from the flash zone without contacting the vapor stream with hydrocarbonaceous liquid; (c) condensing at least a portion of the hydrocarbonaceous vapor stream comprisin
    Type: Grant
    Filed: October 9, 1990
    Date of Patent: April 7, 1992
    Assignee: UOP
    Inventors: Tom N. Kalnes, Robert B. James, Jr.
  • Patent number: 5068484
    Abstract: A process for the production of a hydrogenated hydrocarbonaceous product from a feedstock comprising organic compounds having a tendency to readily form polymer compounds by means of contacting the feed with a hydrogenated recycle liquid containing dissolved hydrogen in a first hydrogenation reaction zone operated at hydrogenation conditions selected to minimize a hydrogen-rich gaseous phase and to selectively hydrogenate organic compounds having a tendency to readily form polymer compounds and to produce a first hydrogenated stream comprising hydrocarbonaceous compounds and having a reduced concentration of polymer precursors. The resulting first hydrogenated stream is then contacted in a second hydrogenation zone with added hydrogen to produce hydrogenated stream comprising hydrogenated hydrocarbonaceous compounds.
    Type: Grant
    Filed: November 2, 1989
    Date of Patent: November 26, 1991
    Assignee: UOP
    Inventors: Robert B. James, Jr., Tom N. Kalnes
  • Patent number: 5064450
    Abstract: A gas absorber for removing at least one gaseous component from a flowing gas stream by contacting the gas stream with a lean liquid stream to absorb at least a portion of the gaseous component to produce a rich liquid stream comprising the gaseous component and a flowing gas stream having a reduced concentration of the gaseous component which absorber comprises: (a) a double wall forming an annulus having a means for restricting fluid flow into the bottom of the gas absorber from the bottom of the annulus and a means for passing fluid out of an upper section of the annulus into the gas absorber; (b) an inlet for the lean liquid stream having a locus in the upper end of the gas absorber; (c) an inlet for the flowing gas stream; (d) an outlet for the rich liquid stream having a locus in the lower end of the gas absorber; (e) an outlet for the flowing gas stream having a reduced concentration of the gaseous component; and (f) at least one inlet communicating with the lower end of the annulus which inlet is used
    Type: Grant
    Filed: January 2, 1991
    Date of Patent: November 12, 1991
    Assignee: UOP
    Inventors: Steven P. Lankton, Robert B. James, Jr.
  • Patent number: 5057125
    Abstract: A process for the removal of organic halide compounds from an effluent waste gas wherein the waste gas is sequentially compressed to separate water vapor and organic halide compounds, and to contact the resulting compressed gas having a reduced concentration of organic halide compounds with an adsorbent to produce an effluent waste gas containing essentially no detectable quantities of organic halide compounds.
    Type: Grant
    Filed: May 14, 1990
    Date of Patent: October 15, 1991
    Assignee: UOP
    Inventors: Steven P. Lankton, Richard T. Maurer, Robert B. James, Jr.