Patents by Inventor Robert D. Fallon

Robert D. Fallon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7992639
    Abstract: Improvement in the compatibility of hydrocarbon and water is achieved by surface active agents newly synthesized by mixed microbial populations. Methods for enhancing the microbial production of surface-active agents in hydrocarbon-exposed surface waters can be achieved by supplementing the mixed microbial population with one or more carbon sources, most notably propionate. Hydrocarbon-exposed surface waters having enhanced levels of surface-active agents can be used to improve hydrocarbon recovery from subterranean formations or for remediation of hydrocarbon-contaminated sites.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: August 9, 2011
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Robert D. Fallon
  • Patent number: 7939303
    Abstract: A process is provided for producing glycolic acid from formaldehyde and hydrogen cyanide. More specifically, heat-treated formaldehyde and hydrogen cyanide are reacted to produce glycolonitrile having low concentrations of impurities. The glycolonitrile is subsequently converted to an aqueous solution of ammonium glycolate using an enzyme catalyst having nitrilase activity derived from Acidovorax facilis 72W (ATCC 57746). Glycolic acid is recovered in the form of the acid or salt from the aqueous ammonium glycolate solution using a variety of methods described herein.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: May 10, 2011
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Robert DiCosimo, Anna Panova, Jeffery Scott Thompson, Robert D. Fallon, F. Glenn Gallagher, Thomas Foo, Xu Li, George C. Fox, Joseph J. Zaher, Mark S. Payne, Daniel P. O'Keefe
  • Publication number: 20110030956
    Abstract: Methods and compositions are provided wherein microorganisms are used to alter the interface of hydrocarbons and hydrocarbon-coated surfaces to increase oil recovery, for improved bioremediation and/or pipeline maintenance.
    Type: Application
    Filed: May 21, 2010
    Publication date: February 10, 2011
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventors: ERIC R. CHOBAN, ROBERT D. FALLON, EDWIN R. HENDRICKSON, SCOTT CHRISTOPHER JACKSON, ABIGAIL K. LUCKRING, MICHAEL P. PERRY, DAVID ALAN SUCHANEC, SHERYL M. ANYZEK
  • Patent number: 7833417
    Abstract: The present invention relates to methods for improving hydrocarbon-water compatibility. More specifically, the invention relates to methods for enhancing the production of surface-active agents in hydrocarbon-exposed surface waters in order to improve hydrocarbon-water compatibility. Hydrocarbon-exposed surface waters having enhanced levels of surface-active agents can be used to improve remediation of subsurface hydrocarbon-contaminated sites.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: November 16, 2010
    Assignee: E. I. duPont de Nemours and Company
    Inventor: Robert D. Fallon
  • Patent number: 7740063
    Abstract: A method for the phylogenetic identification of indigenous anaerobic denitrifying bacterial species in an oil well is described. The method avoids the process of enrichment of microbial samples.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: June 22, 2010
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Robert D. Fallon, Linda L. Hnatow, Scott Christopher Jackson, Sharon Jo Keeler
  • Patent number: 7741083
    Abstract: A process is provided for producing glycolic acid from formaldehyde and hydrogen cyanide. More specifically, heat-treated formaldehyde and hydrogen cyanide are reacted to produce glycolonitrile having low concentrations of impurities. The glycolonitrile is subsequently converted to an aqueous solution of ammonium glycolate using an enzyme catalyst having nitrilase activity derived from Acidovorax facilis 72W (ATCC 57746). Glycolic acid is recovered in the form of the acid or salt from the aqueous ammonium glycolate solution using a variety of methods described herein.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: June 22, 2010
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Robert DiCosimo, Anna Panova, Jeffery Scott Thompson, Robert D. Fallon, F. Glenn Gallagher, Thomas Foo, Xu Li, George C. Fox, Joseph J. Zaher, Mark S. Payne, Daniel P. O'Keefe
  • Patent number: 7732172
    Abstract: A process is provided for producing glycolic acid from formaldehyde and hydrogen cyanide. More specifically, heat-treated formaldehyde and hydrogen cyanide are reacted to produce glycolonitrile having low concentrations of impurities. The glycolonitrile is subsequently converted to an aqueous solution of ammonium glycolate using an enzyme catalyst having nitrilase activity derived from Acidovorax facilis 72W (ATCC 57746). Glycolic acid is recovered in the form of the acid or salt from the aqueous ammonium glycolate solution using a variety of methods described herein.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: June 8, 2010
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Robert DiCosimo, Anna Panova, Jeffrey Scott Thompson, Robert D. Fallon, F. Glenn Gallagher, Thomas Foo, Xu Li, George C. Fox, Joseph J. Zaher, Mark S. Payne, Daniel P. O'Keefe
  • Publication number: 20100081585
    Abstract: Controlling microbial growth and activity during Microbial Enhanced Oil Recovery processes is disclosed. Specific control of microbial growth and activity in this process results in prevention of nutrient loss in transit and allows better targeting of microbial activity to the desired subsurface location(s).
    Type: Application
    Filed: September 25, 2009
    Publication date: April 1, 2010
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventor: ROBERT D. FALLON
  • Patent number: 7677305
    Abstract: Methods of reducing the viscosity of crude oil in an oil well are provided. The methods comprise the introduction of at least on reductant to an injection fluid which is then injected into the well. Aromatic hydrocarbons in the oil are reduced in the presence of reductant and indigenous microbial populations to reduce the viscosity of the oil.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: March 16, 2010
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Robert D. Fallon, Scott Christopher Jackson
  • Publication number: 20100044031
    Abstract: A method for the phylogenetic identification of indigenous anaerobic denitrifying bacterial species in an oil well is described. The method avoids the process of enrichment of microbial samples.
    Type: Application
    Filed: August 20, 2008
    Publication date: February 25, 2010
    Applicant: E. I. duPont de Nemours and Company
    Inventors: Robert D. Fallon, Linda L. Hnatow, Scott Christopher Jackson, Sharon Jo Keeler
  • Publication number: 20090263887
    Abstract: The present disclosure relates to isolation and identification of unique Pseudomonas stutzeri strains that can grow on crude oil under denitrifying conditions and are useful in oil recovery.
    Type: Application
    Filed: April 18, 2008
    Publication date: October 22, 2009
    Applicant: E. I. DUPONT DE NEMOURS AND COMPANY
    Inventors: Sharon Jo Keeler, Robert D. Fallon, Edwin R. Hendrickson, Linda L. Hnatow, Scott Christopher Jackson, Michael P. Perry
  • Publication number: 20090050315
    Abstract: The viscosity of the crude oil is reduced through reductive biotransformation of aromatic components of the crude oil by enhancing the biochemical capabilities of the natural anaerobic microbial populations of the well.
    Type: Application
    Filed: August 20, 2008
    Publication date: February 26, 2009
    Inventors: Robert D. Fallon, Scott Christopher Jackson
  • Publication number: 20090050316
    Abstract: The present invention relates to methods for improving hydrocarbon and water compatibility. More specifically, the invention relates to methods for enhancing the microbial production of surface-active agents in hydrocarbon-exposed surface waters in order to improve hydrocarbon and water compatibility. Hydrocarbon-exposed surface waters having enhanced levels of surface-active agents can be used to improve hydrocarbon recovery from subterranean formations or for remediation of hydrocarbon-contaminated sites.
    Type: Application
    Filed: August 20, 2008
    Publication date: February 26, 2009
    Inventor: Robert D. Fallon
  • Publication number: 20090050317
    Abstract: The present invention relates to methods for improving hydrocarbon-water compatibility. More specifically, the invention relates to methods for enhancing the production of surface-active agents in hydrocarbon-exposed surface waters in order to improve hydrocarbon-water compatibility. Hydrocarbon-exposed surface waters having enhanced levels of surface-active agents can be used to improve remediation of subsurface hydrocarbon-contaminated sites.
    Type: Application
    Filed: August 20, 2008
    Publication date: February 26, 2009
    Inventor: Robert D. Fallon
  • Publication number: 20090011482
    Abstract: A process is provided for producing glycolic acid from formaldehyde and hydrogen cyanide. More specifically, heat-treated formaldehyde and hydrogen cyanide are reacted to produce glycolonitrile having low concentrations of impurities. The glycolonitrile is subsequently converted to an aqueous solution of ammonium glycolate using an enzyme catalyst having nitrilase activity derived from Acidovorax facilis 72W (ATCC 57746). Glycolic acid is recovered in the form of the acid or salt from the aqueous ammonium glycolate solution using a variety of methods described herein.
    Type: Application
    Filed: August 12, 2008
    Publication date: January 8, 2009
    Applicant: E.I. Du Pont De Nemours And Company
    Inventors: Robert DiCosimo, Anna Panova, Jeffery Scott Thompson, Robert D. Fallon, F. Glenn Gallagher, Thomas Foo, Xu Li, George C. Fox, Joseph J. Zaher, Mark S. Payne, Daniel P. O'Keefe
  • Publication number: 20090011483
    Abstract: A process is provided for producing glycolic acid from formaldehyde and hydrogen cyanide. More specifically, heat-treated formaldehyde and hydrogen cyanide are reacted to produce glycolonitrile having low concentrations of impurities. The glycolonitrile is subsequently converted to an aqueous solution of ammonium glycolate using an enzyme catalyst having nitrilase activity derived from Acidovorax facilis 72W (ATCC 57746). Glycolic acid is recovered in the form of the acid or salt from the aqueous ammonium glycolate solution using a variety of methods described herein.
    Type: Application
    Filed: August 12, 2008
    Publication date: January 8, 2009
    Applicant: E.I. Du Pont De Nemous And Company
    Inventors: Robert DiCosimo, Anna Panova, Jerrery Scott Thompson, Robert D. Fallon, Thomas Foo, F. Glenn Gallagher, Xu Li, George C. Fox, Joseph J. Zaher, Mark S. Payne, Daniel P. O'Keefe
  • Publication number: 20090004709
    Abstract: A process is provided for producing glycolic acid from formaldehyde and hydrogen cyanide. More specifically, heat-treated formaldehyde and hydrogen cyanide are reacted to produce glycolonitrile having low concentrations of impurities. The glycolonitrile is subsequently converted to an aqueous solution of ammonium glycolate using an enzyme catalyst having nitrilase activity derived from Acidovorax facilis 72W (ATCC 57746). Glycolic acid is recovered in the form of the acid or salt from the aqueous ammonium glycolate solution using a variety of methods described herein.
    Type: Application
    Filed: August 12, 2008
    Publication date: January 1, 2009
    Applicant: E.l. Du Pont De Nemours And Company
    Inventors: Robert DiCosimo, Anna Panova, Jeffery Scott Thompson, Robert D. Fallon, Thomas Foo, F. Glenn Gallagher, Xu Li, George C. Fox, Joseph J. Zaher, Mark S. Payne, Daniel P. O'Keefe
  • Publication number: 20090004707
    Abstract: A process is provided for producing glycolic acid from formaldehyde and hydrogen cyanide. More specifically, heat-treated formaldehyde and hydrogen cyanide are reacted to produce glycolonitrile having low concentrations of impurities. The glycolonitrile is subsequently converted to an aqueous solution of ammonium glycolate using an enzyme catalyst having nitrilase activity derived from Acidovorax facilis 72W (ATCC 57746). Glycolic acid is recovered in the form of the acid or salt from the aqueous ammonium glycolate solution using a variety of methods described herein.
    Type: Application
    Filed: August 12, 2008
    Publication date: January 1, 2009
    Applicant: E.I. Du Pont De Nemours And Company
    Inventors: Robert DiCosimo, Anna Panova, Jeffery Scott Thompson, Robert D. Fallon, Thomas Foo, F. Glenn Gallagher, Xu Li, George C. Fox, Joseph J. Zaher, Mark S. Payne, Daniel P. O'Keefe
  • Publication number: 20090004711
    Abstract: A process is provided for producing glycolic acid from formaldehyde and hydrogen cyanide. More specifically, heat-treated formaldehyde and hydrogen cyanide are reacted to produce glycolonitrile having low concentrations of impurities. The glycolonitrile is subsequently converted to an aqueous solution of ammonium glycolate using an enzyme catalyst having nitrilase activity derived from Acidovorax facilis 72W (ATCC 57746). Glycolic acid is recovered in the form of the acid or salt from the aqueous ammonium glycolate solution using a variety of methods described herein.
    Type: Application
    Filed: August 12, 2008
    Publication date: January 1, 2009
    Applicant: E.I. Du Pont De Nemours And Company
    Inventors: Robert DiCosimo, Anna Panova, Jeffery Scott Thompson, Robert D. Fallon, Thomas Foo, F. Glenn Gallagher, Xu Li, George C. Fox, Joseph J. Zaher, Mark S. Payne, Daniel P. O'Keefe
  • Publication number: 20090004710
    Abstract: A process is provided for producing glycolic acid from formaldehyde and hydrogen cyanide. More specifically, heat-treated formaldehyde and hydrogen cyanide are reacted to produce glycolonitrile having low concentrations of impurities. The glycolonitrile is subsequently converted to an aqueous solution of ammonium glycolate using an enzyme catalyst having nitrilase activity derived from Acidovorax facilis 72W (ATCC 57746). Glycolic acid is recovered in the form of the acid or salt from the aqueous ammonium glycolate solution using a variety of methods described herein.
    Type: Application
    Filed: August 12, 2008
    Publication date: January 1, 2009
    Applicant: E.I. Du Pont De Nemours And Company
    Inventors: Robert DiCosimo, Anna Panova, Jeffery Scott Thompson, Robert D. Fallon, Thomas Foo, F. Glenn Gallagher, Xu Li, George C. Fox, Joseph J. Zaher, Mark S. Payne, Daniel P. O'Keefe