Patents by Inventor Robert G. Graham

Robert G. Graham has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130000319
    Abstract: Pyrolyzing gasification system and method of use including primary combustion of non-uniform solid fuels such as biomass and solid wastes within a refractory lined gasifier, secondary combustion of primary combustion gas within a staged, cyclonic, refractory lined oxidizer, and heat energy recovery from the oxidized flue gas within an indirect air-to-air all-ceramic heat exchanger or external combustion engine. Primary combustion occurs at low substoichoimetric air percentages of 10-30 percent and at temperatures below 1000 degrees F. Secondary combustion is staged and controlled for low NOx formation and prevention of formation of CO, hydrocarbons, and VOCs. The gasifier includes a furnace bed segmented into individual cells, each cell is independently monitored using a ramp temperature probe, and provided with controlled air injection. Gasifier air injection includes tuyere arrays, lances, or both.
    Type: Application
    Filed: March 14, 2012
    Publication date: January 3, 2013
    Inventor: Robert G. Graham
  • Publication number: 20120322016
    Abstract: A roller hearth calcining furnace that uses a movable fluid bed that is transported through plural heating modules, each heating module independently heated using an indirect heating system. The indirect heating system includes an oxidizer, an all-ceramic, indirect, air-to-air heat exchanger, and one or more metal heat exchangers. The oxidizer can be fired with oil, coal, natural gas or other means, is impervious to attack from dirty fuels, and produces clean hot air for productive use. The movable fluid bed includes a permeable silicon carbide ceramic plate that resides within, and is supported by, a sagger or tray. The sagger is transported on rollers through the plural heating modules, and thus different temperature zones within a furnace as required by the temperature profile of the material being calcined.
    Type: Application
    Filed: August 30, 2012
    Publication date: December 20, 2012
    Inventor: Robert G. Graham
  • Publication number: 20120312026
    Abstract: Pyrolyzing gasification system and method of use including primary combustion of non-uniform solid fuels such as biomass and solid wastes within a refractory lined gasifier, secondary combustion of primary combustion gas within a staged, cyclonic, refractory lined oxidizer, and heat energy recovery from the oxidized flue gas within an indirect air-to-air all-ceramic heat exchanger or external combustion engine. Primary combustion occurs at low substoichoimetric air percentages of 10-30 percent and at temperatures below 1000 degrees F. Secondary combustion is staged and controlled for low NOx formation and prevention of formation of CO, hydrocarbons, and VOCs. The gasifier includes a furnace bed segmented into individual cells, each cell is independently monitored using a ramp temperature probe, and provided with controlled air injection. Gasifier air injection includes tuyere arrays, lances, or both.
    Type: Application
    Filed: July 1, 2011
    Publication date: December 13, 2012
    Inventor: Robert G. Graham
  • Patent number: 8317886
    Abstract: An apparatus and method for starved air gasification of solid organic materials, including biomass and other wastes, to convert the chemical energy stored in such materials to thermal energy or gaseous products that may be used in biochemical and/or chemical synthesis. Specifically, the system utilizes a gasifier having a “moving bed of ash” hearth wherein the feedstock is partially oxidized at a low temperature (less than 1500 degrees F.) in a square or rectangular chamber having a vaulted, tapered or flat roof.
    Type: Grant
    Filed: November 7, 2003
    Date of Patent: November 27, 2012
    Assignee: Nexterra Systems Corp.
    Inventors: Robert G. Graham, Jan Barynin, Kenneth M. Davison, Dave Berner
  • Publication number: 20120279825
    Abstract: The present invention is directed to the upgrading of heavy hydrocarbon feedstock that utilizes a short residence pyrolytic reactor operating under conditions that cracks and chemically upgrades the feedstock. The method for upgrading a heavy hydrocarbon feedstock comprises introducing a particulate heat carrier into an upflow reactor, introducing the heavy hydrocarbon feedstock into the upflow reactor at a location above that of the particulate heat carrier so that a loading ratio of the particulate heat carrier to feedstock is from about 15:1 to about 200:1, allowing the heavy hydrocarbon feedstock to interact with the heat carrier with a residence time of less than about 1 second, to produce a product stream, separating the product stream from the particulate heat carrier, regenerating the particulate heat carrier, and collecting a gaseous and liquid product from the product stream.
    Type: Application
    Filed: July 18, 2012
    Publication date: November 8, 2012
    Inventors: Barry Freel, Robert G. Graham
  • Patent number: 8240368
    Abstract: What is disclosed herein deals with low to medium pressure, high temperature, all ceramic, air-to-air, indirect heat exchangers, novel ball joints, high load-bearing ceramic tube sheets, and tube seal extenders for ceramic tubes that are useful in such heat exchangers. Also disclosed are new and novel systems used in new and novel industrial processes such as chemical processing, sludge destruction and the production of particulates such as, for example, carbon black. Systems utilizing several heat exchangers are also disclosed.
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: August 14, 2012
    Inventor: Robert G. Graham
  • Publication number: 20120137582
    Abstract: Systems and methods are provided for generating energy from biomass. A gasifier is provided for generating syngas from the biomass. The gasifier comprises a housing for providing a first, oxygen starved environment in which the biomass is sub-stoichiometrically combusted to generate syngas—an effluent comprising gaseous combustibles. An oxidizer is connected to receive the syngas from the gasifier and configured to oxidize the syngas in a second environment distinct from the first, oxygen starved environment and to thereby generate heat energy. An oxidative agent supply mechanism introduces an oxidative agent to the first, oxygen starved environment in the gasifier housing, the oxidative agent comprising a mixture of flue gas and air.
    Type: Application
    Filed: February 13, 2012
    Publication date: June 7, 2012
    Inventors: Robert G. Graham, Dejan Sparica
  • Publication number: 20120125815
    Abstract: The present invention is directed to the upgrading of heavy hydrocarbon feedstock that utilizes a short residence pyrolytic reactor operating under conditions that cracks and chemically upgrades the feedstock. The method for upgrading a heavy hydrocarbon feedstock comprises introducing a particulate heat carrier into an upflow reactor, introducing the heavy hydrocarbon feedstock into the upflow reactor at a location above that of the particulate heat carrier so that a loading ratio of the particulate heat carrier to feedstock is from about 15:1 to about 200:1, allowing the heavy hydrocarbon feedstock to interact with the heat carrier with a residence time of less than about 1 second, to produce a product stream, separating the product stream from the particulate heat carrier, regenerating the particulate heat carrier, and collecting a gaseous and liquid product from the product stream.
    Type: Application
    Filed: December 27, 2011
    Publication date: May 24, 2012
    Inventors: Barry Freel, Robert G. Graham
  • Publication number: 20120111766
    Abstract: The present invention is directed to the upgrading of heavy hydrocarbon feedstock that utilizes a short residence pyrolytic reactor operating under conditions that cracks and chemically upgrades the feedstock. The process of the present invention provides for the preparation of a partially upgraded feedstock exhibiting reduced viscosity and increased API gravity. This process selectively removes metals, salts, water and nitrogen from the feedstock, while at the same time maximizes the yield of the liquid product, and minimizes coke and gas production. Furthermore, this process reduces the viscosity of the feedstock in order to permit pipeline transport, if desired, of the upgraded feedstock with little or no addition of diluents.
    Type: Application
    Filed: November 1, 2011
    Publication date: May 10, 2012
    Inventors: Barry Freel, Robert G. Graham
  • Patent number: 8105482
    Abstract: The present invention is directed to the upgrading of heavy hydrocarbon feedstock. The process of the present invention provides for the preparation of a partially upgraded feedstock exhibiting reduced viscosity and increased API gravity. This process reduces the viscosity of the feedstock in order to permit pipeline transport of the upgraded feedstock with little or no addition of diluents. The method for upgrading a heavy hydrocarbon feedstock comprises introducing a particulate heat carrier into an upflow reactor, introducing the heavy hydrocarbon feedstock into the upflow reactor at a location above that of the particulate heat carrier, allowing the heavy hydrocarbon feedstock to interact with the heat carrier to produce a product stream, separating the product stream from the particulate heat carrier, regenerating the particulate heat carrier, and collecting a gaseous and liquid product from the product stream.
    Type: Grant
    Filed: April 7, 2000
    Date of Patent: January 31, 2012
    Assignee: Ivanhoe Energy, Inc.
    Inventors: Barry Freel, Robert G. Graham
  • Patent number: 8062503
    Abstract: The present invention is directed to the upgrading of heavy hydrocarbon feedstock that utilizes a short residence pyrolytic reactor operating under conditions that cracks and chemically upgrades the feedstock. The process of the present invention provides for the preparation of a partially upgraded feedstock exhibiting reduced viscosity and increased API gravity. This process selectively removes metals, salts, water and nitrogen from the feedstock, while at the same time maximizes the yield of the liquid product, and minimizes coke and gas production. Furthermore, this process reduces the viscosity of the feedstock in order to permit pipeline transport, if desired, of the upgraded feedstock with little or no addition of diluents.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: November 22, 2011
    Assignee: Ivanhoe Energy Inc.
    Inventors: Barry Freel, Robert G. Graham
  • Publication number: 20110265489
    Abstract: Pyrolyzing gasification system and method of use including primary combustion of non-uniform solid fuels such as biomass and solid wastes within a refractory lined gasifier, secondary combustion of primary combustion gas within a staged, cyclonic, refractory lined oxidizer, and heat energy recovery from the oxidized flue gas within an indirect air-to-air all-ceramic heat exchanger or external combustion engine. Primary combustion occurs at low substoichoimetric air percentages of 10-30 percent and at temperatures below 1000 degrees F. Secondary combustion is staged and controlled for low NOx formation and prevention of formation of CO, hydrocarbons, and VOCs. The gasifier includes a furnace bed segmented into individual cells, each cell is independently monitored using a ramp temperature probe, and provided with controlled air injection. Gasifier air injection includes tuyere arrays, lances, or both.
    Type: Application
    Filed: July 1, 2011
    Publication date: November 3, 2011
    Inventor: Robert G. Graham
  • Patent number: 8001912
    Abstract: Pyrolyzing gasification system and method of use including primary combustion of non-uniform solid fuels such as biomass and solid wastes within a refractory lined gasifier, secondary combustion of primary combustion gas within a staged, cyclonic, refractory lined oxidizer, and heat energy recovery from the oxidized flue gas within an indirect air-to-air all-ceramic heat exchanger or external combustion engine. Primary combustion occurs at low substoichiometric air percentages of 10-30 percent and at temperatures below 1000 degrees F. Secondary combustion is staged and controlled for low NOx formation and prevention of formation of CO, hydrocarbons, and VOCs. The gasifier includes a furnace bed segmented into individual cells, each cell is independently monitored using a ramp temperature probe, and provided with controlled air injection. Gasifier air injection includes tuyere arrays, lances, or both.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: August 23, 2011
    Assignee: Heat Transfer International, Inc.
    Inventor: Robert G. Graham
  • Patent number: 7976593
    Abstract: A gasifier and gasifier system based on the gasifier, which contains as a major component, a novel feed system for feeding organic materials into the burn pile of the gasifier. The gasifier feed system is a horizontal auger driven feed system that feeds directly through a ceramic elbow into the furnace without having to auger the feed through significant vertical elevations.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: July 12, 2011
    Assignee: Heat Transfer International, LLC
    Inventor: Robert G. Graham
  • Publication number: 20100313796
    Abstract: Systems and methods are provided for generating energy from biomass. A gasifier is provided for generating syngas from the biomass. The gasifier comprises a housing for providing a first, oxygen starved environment in which the biomass is sub-stoichiometrically combusted to generate syngas—an effluent comprising gaseous combustibles. An oxidizer is connected to receive the syngas from the gasifier and configured to oxidize the syngas in a second environment distinct from the first, oxygen starved environment and to thereby generate heat energy. An oxidative agent supply mechanism introduces an oxidative agent to the first, oxygen starved environment in the gasifier housing, the oxidative agent comprising a mixture of flue gas and air.
    Type: Application
    Filed: August 20, 2010
    Publication date: December 16, 2010
    Inventors: Robert G. Graham, Dejan Sparica
  • Publication number: 20100224350
    Abstract: What is disclosed herein deals with low to medium pressure, high temperature, all ceramic, air-to-air, indirect heat exchangers, novel ball joints, high load-bearing ceramic tube sheets, and tube seal extenders for ceramic tubes that are useful in such heat exchangers. Also disclosed are new and novel systems used in new and novel industrial processes such as chemical processing, sludge destruction and the production of particulates such as, for example, carbon black. Systems utilizing several heat exchangers are also disclosed.
    Type: Application
    Filed: May 13, 2010
    Publication date: September 9, 2010
    Inventor: Robert G. Graham
  • Patent number: 7762317
    Abstract: What is disclosed herein deals with low to medium pressure, high temperature, all ceramic, air-to-air, indirect heat exchangers, novel ball joints, high load-bearing ceramic tube sheets, and tube seal extenders for ceramic tubes that are useful in such heat exchangers. Also disclosed are new and novel systems used in new and novel industrial processes such as chemical processing, sludge destruction and the production of particulates such as, for example, carbon black. Systems utilizing several heat exchangers are also disclosed.
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: July 27, 2010
    Assignee: Heat Transfer International, Inc.
    Inventor: Robert G. Graham
  • Publication number: 20090298927
    Abstract: The present invention is related to a thermal extract of a plant material and methods of extraction thereof. The method of producing a thermal extract from a plant starting material by means of a thermal extraction of the starting material wherein the improvement consists in requiring smaller amounts of costly and/or toxic organic solvents for the extraction and partitioning steps.
    Type: Application
    Filed: April 2, 2007
    Publication date: December 3, 2009
    Applicant: Pharmatherm Chemicals Inc.
    Inventors: David Boulard, Robert G. Graham, Barry Freel
  • Publication number: 20090266081
    Abstract: Pyrolyzing gasification system and method of use including primary combustion of non-uniform solid fuels such as biomass and solid wastes within a refractory lined gasifier, secondary combustion of primary combustion gas within a staged, cyclonic, refractory lined oxidizer, and heat energy recovery from the oxidized flue gas within an indirect air-to-air all-ceramic heat exchanger or external combustion engine. Primary combustion occurs at low substoichiometric air percentages of 10-30 percent and at temperatures below 1000 degrees F. Secondary combustion is staged and controlled for low NOx formation and prevention of formation of CO, hydrocarbons, and VOCs. The gasifier includes a furnace bed segmented into individual cells, each cell is independently monitored using a ramp temperature probe, and provided with controlled air injection. Gasifier air injection includes tuyere arrays, lances, or both.
    Type: Application
    Filed: June 30, 2009
    Publication date: October 29, 2009
    Inventor: Robert G. Graham
  • Publication number: 20090249641
    Abstract: The present invention relates generally to systems and methods for drying and gasifying substances using the calorific value contained in the substances, and it more specifically relates to apparatus and methods for processing wet, pasty, sticky substances, such as municipal wastewater treatment sewage sludge, into a workable, powdered product.
    Type: Application
    Filed: September 12, 2008
    Publication date: October 8, 2009
    Applicant: WasteDry, LLC
    Inventors: Robert G. Graham, Tony A. Kuipers, T. Terry Tousey, Joseph C. Snodgrass, David E. Prouty