Patents by Inventor Robert H. Dennard

Robert H. Dennard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8120386
    Abstract: A circuit comprises a control line and a two terminal semiconductor device having first and second terminals. The first terminal is coupled to a signal line, and the second terminal is coupled to the control line. The two terminal semiconductor device is adapted to have a capacitance when a voltage on the first terminal relative to the second terminal is above a threshold voltage and to have a smaller capacitance when a voltage on the first terminal relative to the second terminal is below the threshold voltage. The control line is coupled to a control signal and the signal line is coupled to a signal and is output of the circuit. A signal is placed on the signal line and voltage on the control line is modified (e.g., raised in the case of n-type devices, or lowered for a p-type devices). When the signal falls below the threshold voltage, the two terminal semiconductor device acts as a very small capacitor and the output of the circuit will be a small value.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: February 21, 2012
    Assignee: International Business Machines Corporation
    Inventors: Wing K. Luk, Robert H. Dennard
  • Publication number: 20110298440
    Abstract: A low voltage signaling system for integrated circuits includes a first voltage domain operating at a nominal integrated circuit (IC) power supply voltage (Vdd) swing level at a signal transmitting end of a first chip, a second voltage domain having one or more transmission interconnect lines operating at a reduced voltage swing level with respect to the first voltage domain, and a third voltage domain at a signal receiving end of a second chip, the third voltage domain operating at the Vdd swing level; wherein an input signal originating from the first voltage domain is down converted to operate at the reduced voltage swing level for transmission over the second voltage domain, and wherein the third voltage domain senses the input signal transmitted over the second voltage domain and generates an output signal operating back up at the Vdd swing level.
    Type: Application
    Filed: June 7, 2010
    Publication date: December 8, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Leland Chang, Robert H. Dennard, Brian L. Ji, Wing K. Luk, Robert K. Montoye
  • Publication number: 20110121811
    Abstract: A heterogeneous three-dimensional (3-D) stacked apparatus is provided that includes multiple layers arranged in a stacked configuration with a lower layer configured to receive a board-level voltage and one or more upper layers stacked above the lower layer. The heterogeneous 3-D stacked apparatus also includes multiple tiles per layer, where each tile is designed to receive a separately regulated voltage. The heterogeneous 3-D stacked apparatus additionally includes at least one layer in the one or more upper layers with voltage converters providing the separately regulated voltage converted from the board-level voltage.
    Type: Application
    Filed: November 23, 2009
    Publication date: May 26, 2011
  • Publication number: 20110115553
    Abstract: SOI CMOS structures having at least one programmable electrically floating backplate are provided. Each electrically floating backplate is individually programmable. Programming can be performed by injecting electrons into each conductive floating backplate. Erasure of the programming can be accomplished by tunneling the electrons out of the floating backplate. At least one of two means can accomplish programming of the electrically floating backgate. The two means include Fowler-Nordheim tunneling, and hot electron injection using an SOI pFET. Hot electron injection using pFET can be done at much lower voltage than injection by tunneling electron injection.
    Type: Application
    Filed: November 16, 2009
    Publication date: May 19, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jin Cai, Robert H. Dennard, Ali Khakifirooz, Tak H. Ning, Jeng-Bang Yau
  • Publication number: 20110115021
    Abstract: Shallow trenches are formed around a vertical stack of a buried insulator portion and a top semiconductor portion. A dielectric material layer is deposited directly on sidewalls of the top semiconductor portion. Shallow trench isolation structures are formed by filling the shallow trenches with a dielectric material such as silicon oxide. After planarization, the top semiconductor portion is laterally contacted and surrounded by the dielectric material layer. The dielectric material layer prevents exposure of the handle substrate underneath the buried insulator portion during wet etches, thereby ensuring electrical isolation between the handle substrate and gate electrodes subsequently formed on the top semiconductor portion.
    Type: Application
    Filed: November 16, 2009
    Publication date: May 19, 2011
    Applicant: International Business Machines Corporation
    Inventors: Robert H. Dennard, Marwan H. Khater, Leathen Shi, Jeng-Bang Yau
  • Publication number: 20110108943
    Abstract: A semiconductor wafer structure for integrated circuit devices includes a bulk substrate; a lower insulating layer formed on the bulk substrate; an electrically conductive back gate layer formed on the lower insulating layer; an upper insulating layer formed on the back gate layer; and a hybrid semiconductor-on-insulator layer formed on the upper insulating layer, the hybrid semiconductor-on-insulator layer comprising a first portion having a first crystal orientation and a second portion having a second crystal orientation.
    Type: Application
    Filed: November 6, 2009
    Publication date: May 12, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert H. Dennard, Qiqing C. Ouyang, Jeng-Bang Yau
  • Publication number: 20110073961
    Abstract: A method of forming a self-aligned well implant for a transistor includes forming a patterned gate structure over a substrate, including a gate conductor, a gate dielectric layer and sidewall spacers, the substrate including an undoped semiconductor layer beneath the gate dielectric layer and a doped semiconductor layer beneath the undoped semiconductor layer; removing portions of the undoped semiconductor layer and the doped semiconductor layer left unprotected by the patterned gate structure, wherein a remaining portion of the undoped semiconductor layer beneath the patterned gate structure defines a transistor channel and a remaining portion of the doped semiconductor layer beneath the patterned gate structure defines the self-aligned well implant; and growing a new semiconductor layer at locations corresponding to the removed portions of the undoped semiconductor layer and the doped semiconductor layer, the new semiconductor layer corresponding to source and drain regions of the transistor.
    Type: Application
    Filed: September 28, 2009
    Publication date: March 31, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert H. Dennard, Brian J. Greene, Zhibin Ren, Xinlin Wang
  • Patent number: 7884411
    Abstract: An area-efficient gated diode includes a semiconductor layer of a first conductivity type, an active region of a second conductivity type formed in the semiconductor layer proximate an upper surface thereof, and at least one trench electrode extending vertically through the active region and at least partially into the semiconductor layer. A first terminal of the gated diode is connected to the trench electrode, and a second terminal is connected to the active region. The gated diode is operative in one of at least first an second modes as a function of a voltage potential applied between the first and second terminals. The first mode is characterized by the creation of an inversion layer in the semiconductor layer surrounding the trench electrode. The gated diode has a first capacitance in the first mode and a second capacitance in the second mode, the first capacitance being greater than the second capacitance.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: February 8, 2011
    Assignee: International Business Machines Corporation
    Inventors: Leland Chang, Robert H. Dennard, David M. Fried, Wing Kin Luk
  • Publication number: 20110026323
    Abstract: A gated diode memory cell is provided, including one or more transistors, such as field effect transistors (“FETs”), and a gated diode in signal communication with the FETs such that the gate of the gated diode is in signal communication with the source of a first FET, wherein the gate of the gated diode forms one terminal of the storage cell and the source of the gated diode forms another terminal of the storage cell, the drain of the first FET being in signal communication with a bitline (“BL”) and the gate of the first FET being in signal communication with a write wordline (“WLw”), and the source of the gated diode being in signal communication with a read wordline (“WLr”).
    Type: Application
    Filed: July 30, 2009
    Publication date: February 3, 2011
    Applicant: International Business Machines Corporation
    Inventors: Wing K. Luk, Robert H. Dennard
  • Patent number: 7855428
    Abstract: The invention relates to a design structure, and more particularly, to a design structure for a conductive liner for rad hard total dose immunity and a structure thereof. The structure includes at least one shallow trench isolation structure having oxide material and formed in an SOI. A dielectric liner is formed at an interface of the SOI within the at least one shallow trench isolation structure. A metal or metal alloy layer is formed in the at least one shallow trench isolation structure and between the dielectric liner and the oxide material.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: December 21, 2010
    Assignee: International Business Machines Corporation
    Inventors: Robert H. Dennard, Mark C. Hakey, David V. Horak, Sanjay Mehta
  • Patent number: 7838942
    Abstract: A semiconductor structure that includes at least one logic device region and at least one static random access memory (SRAM) device region wherein each device region includes a double gated field effect transistor (FET) wherein the back gate of each of the FET devices is doped to a specific level so as to improve the performance of the FET devices within the different device regions is provided. In particular, the back gate within the SRAM device region is more heavily doped than the back gate within the logic device region. In order to control short channel effects, the FET device within the logic device region includes a doped channel, while the FET device within the SRAM device region does not. A none uniform lateral doping profile with a low net doping beneath the source/drain regions and a high net doping underneath the channel would provide additional SCE control for the logic device.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: November 23, 2010
    Assignee: International Business Machines Corporation
    Inventors: Robert H. Dennard, Wilfried E. Haensch, Arvind Kumar, Robert J. Miller
  • Publication number: 20100259299
    Abstract: An integrated circuit (IC) system includes a plurality of ICs configured in a stacked voltage domain arrangement such that a low side supply rail of at least one of ICs is common with a high side supply rail of at least another of the ICs; a reversible voltage converter coupled to power rails of each of the plurality of ICs, the reversible voltage converter configured for stabilizing individual voltage domains corresponding to each IC; and one or more data voltage level shifters configured to facilitate data communication between ICs operating in different voltage domains, wherein an input signal of a given logic state corresponding to one voltage in a first voltage domain is shifted to an output signal of the same logic state at another voltage in a second voltage domain.
    Type: Application
    Filed: April 13, 2009
    Publication date: October 14, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert H. Dennard, Brian L. Ji
  • Publication number: 20100214014
    Abstract: An on-chip voltage conversion apparatus for integrated circuits includes a first capacitor; a first NFET device configured to selectively couple a first electrode of the first capacitor to a low side voltage rail of a first voltage domain; a first PFET device configured to selectively couple the first electrode of the first capacitor to a high side voltage rail of the first voltage domain; a second NFET device configured to selectively couple a second electrode of the first capacitor to a low side voltage rail of a second voltage domain, wherein the low side voltage rail of the second voltage domain corresponds to the high side voltage rail of the first voltage domain; and a second PFET device configured to selectively couple the second electrode of the first capacitor to a high side voltage rail of the second voltage domain.
    Type: Application
    Filed: February 25, 2009
    Publication date: August 26, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert H. Dennard, Brian L. Ji, Robert K. Montoye
  • Patent number: 7767546
    Abstract: A semiconductor wafer structure for manufacturing integrated circuit devices includes a bulk substrate; a lower insulating layer formed on the bulk substrate, the lower insulating layer formed from a pair of separate insulation layers having a bonding interface therebetween; an electrically conductive layer formed on the lower insulating layer, the electrically conductive layer further having one or more shallow trench isolation (STI) regions formed therein; an etch stop layer formed on the electrically conductive layer and the one or more STI regions; an upper insulating layer formed on the etch stop layer; and a semiconductor layer formed on the upper insulating layer. A subsequent active area level STI scheme, in conjunction with front gate formation over the semiconductor layer, is also disclosed.
    Type: Grant
    Filed: January 12, 2009
    Date of Patent: August 3, 2010
    Assignee: International Business Machines Corporation
    Inventors: Robert H. Dennard, David R. Greenberg, Amian Majumdar, Leathen Shi, Jeng-Bang Yau
  • Publication number: 20100187607
    Abstract: A semiconductor wafer structure for manufacturing integrated circuit devices includes a bulk substrate; a lower insulating layer formed on the bulk substrate, the lower insulating layer formed from a pair of separate insulation layers having a bonding interface therebetween; an electrically conductive layer formed on the lower insulating layer, the electrically conductive layer further having one or more shallow trench isolation (STI) regions formed therein; an etch stop layer formed on the electrically conductive layer and the one or more STI regions; an upper insulating layer formed on the etch stop layer; and a semiconductor layer formed on the upper insulating layer. A subsequent active area level STI scheme, in conjunction with front gate formation over the semiconductor layer, is also disclosed.
    Type: Application
    Filed: March 31, 2010
    Publication date: July 29, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert H. Dennard, David R. Greenberg, Amlan Majumdar, Leathen Shi, Jeng-Bang Yau
  • Publication number: 20100176495
    Abstract: A semiconductor wafer structure for integrated circuit devices includes a bulk substrate; a lower insulating layer formed on the bulk substrate; an electrically conductive layer formed on the lower insulating layer; an upper insulating layer formed on the electrically conductive layer, the upper insulating layer formed from a pair of separate insulation layers having a bonding interface therebetween; and a semiconductor layer formed on the upper insulating layer.
    Type: Application
    Filed: January 12, 2009
    Publication date: July 15, 2010
    Applicant: International Business Machines Corporation
    Inventors: Jack O. Chu, Robert H. Dennard, John A. Ott, Devendra K. Sadana, Leathen Shi
  • Publication number: 20100176453
    Abstract: A semiconductor wafer structure for manufacturing integrated circuit devices includes a bulk substrate; a lower insulating layer formed on the bulk substrate, the lower insulating layer formed from a pair of separate insulation layers having a bonding interface therebetween; an electrically conductive layer formed on the lower insulating layer, the electrically conductive layer further having one or more shallow trench isolation (STI) regions formed therein; an etch stop layer formed on the electrically conductive layer and the one or more STI regions; an upper insulating layer formed on the etch stop layer; and a semiconductor layer formed on the upper insulating layer. A subsequent active area level STI scheme, in conjunction with front gate formation over the semiconductor layer, is also disclosed.
    Type: Application
    Filed: January 12, 2009
    Publication date: July 15, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert H. Dennard, David R. Greenberg, Amlan Majumdar, Leathen Shi, Jeng-Bang Yau
  • Publication number: 20100176482
    Abstract: A semiconductor substrate structure for manufacturing integrated circuit devices includes a bulk substrate; a lower insulating layer formed on the bulk substrate, the lower insulating layer formed from a pair of separate insulation layers having a bonding interface therebetween; an electrically conductive layer formed on the lower insulating layer; an insulator with etch stop characteristics formed on the electrically conductive layer; an upper insulating layer formed on the etch stop layer; and a semiconductor layer formed on the upper insulating layer. A scheme of subsequently building a dual-depth shallow trench isolation with the deeper STI in the back gate layer self-aligned to the shallower STI in the active region in such a semiconductor substrate is also disclosed.
    Type: Application
    Filed: January 12, 2009
    Publication date: July 15, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINE CORPORATION
    Inventors: Robert H. Dennard, David R. Greenberg, Amlan Majumdar, Leathen Shi, Jeng-Bang Yau
  • Patent number: 7704854
    Abstract: The invention relates to a method includes etching at least one shallow trench in at least an SIO layer; forming a dielectric liner at an interface of the SIO layer and the SIO layer; forming a metal or metal alloy layer in the shallow trench on the dielectric liner; and filling the shallow trench with oxide material over the metal or metal alloy.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: April 27, 2010
    Assignee: International Business Machines Corporation
    Inventors: Robert H. Dennard, Mark C. Hakey, David V. Horak, Sanjay Mehta
  • Publication number: 20090302936
    Abstract: A circuit comprises a control line and a two terminal semiconductor device having first and second terminals. The first terminal is coupled to a signal line, and the second terminal is coupled to the control line. The two terminal semiconductor device is adapted to have a capacitance when a voltage on the first terminal relative to the second terminal is above a threshold voltage and to have a smaller capacitance when a voltage on the first terminal relative to the second terminal is below the threshold voltage. The control line is coupled to a control signal and the signal line is coupled to a signal and is output of the circuit. A signal is placed on the signal line and voltage on the control line is modified (e.g., raised in the case of n-type devices, or lowered for a p-type devices). When the signal falls below the threshold voltage, the two terminal semiconductor device acts as a very small capacitor and the output of the circuit will be a small value.
    Type: Application
    Filed: August 18, 2009
    Publication date: December 10, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Wing K. Luk, Robert H. Dennard