Patents by Inventor Robert Stephen Wagner

Robert Stephen Wagner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170023841
    Abstract: Disclosed herein are glass articles coated on at least one surface with an electrochromic layer and comprising minimal regions of laser damage, and methods for laser processing such glass articles. Insulated glass units comprising such coated glass articles are also disclosed herein.
    Type: Application
    Filed: October 7, 2016
    Publication date: January 26, 2017
    Applicant: View Inc.
    Inventors: Moussa N'Gom, David Andrew Pastel, Garrett Andrew Piech, Robert Stephen Wagner, Chad Michael Wilcox
  • Publication number: 20170001900
    Abstract: Processes of chamfering and/or beveling an edge of a glass substrate of arbitrary shape using lasers are described herein. Two general methods to produce chamfers on glass substrates are the first method involves cutting the edge with the desired chamfer shape utilizing an ultra-short pulse laser to create perforations within the glass; followed by an ion exchange.
    Type: Application
    Filed: January 27, 2015
    Publication date: January 5, 2017
    Inventors: Sasha Marjanovic, David Andrew Pastel, Garrett Andrew Piech, Jose Mario Quintal, Helmut Schillinger, Sergio Tsuda, Robert Stephen Wagner, Andrea Nicole Yeary
  • Publication number: 20160368100
    Abstract: Forming holes in a material includes focusing a pulsed laser beam into a laser beam focal line oriented along the beam propagation direction and directed into the material, the laser beam focal line generating an induced absorption within the material, the induced absorption producing a defect line along the laser beam focal line within the material, and translating the material and the laser beam relative to each other, thereby forming a plurality of defect lines in the material, and etching the material in an acid solution to produce holes greater than 1 micron in diameter by enlarging the defect lines in the material. A glass article includes a stack of glass substrates with formed holes of 1-100 micron diameter extending through the stack.
    Type: Application
    Filed: August 30, 2016
    Publication date: December 22, 2016
    Inventors: Sasha Marjanovic, Garrett Andrew Piech, Shyamala Shanmugam, Carlos Alberto Pons Siepermann, Sergio Tsuda, Zsigmond Varga, Robert Stephen Wagner
  • Publication number: 20160368809
    Abstract: The present invention relates to a process for cutting and separating interior contours in thin substrates of transparent materials, in particular glass. The method involves the utilization of an ultra-short pulse laser to form perforation or holes in the substrate, that may be followed by use of a CO2 laser beam to promote full separation about the perforated line.
    Type: Application
    Filed: August 30, 2016
    Publication date: December 22, 2016
    Inventors: Thomas Hackert, Sasha Marjanovic, Garrett Andrew Piech, Sergio Tsuda, Robert Stephen Wagner
  • Patent number: 9517963
    Abstract: Forming holes in a material includes focusing a pulsed laser beam into a laser beam focal line oriented along the beam propagation direction and directed into the material, the laser beam focal line generating an induced absorption within the material, the induced absorption producing a defect line along the laser beam focal line within the material, and translating the material and the laser beam relative to each other, thereby forming a plurality of defect lines in the material, and etching the material in an acid solution to produce holes greater than 1 micron in diameter by enlarging the defect lines in the material. A glass article includes a stack of glass substrates with formed holes of 1-100 micron diameter extending through the stack.
    Type: Grant
    Filed: November 7, 2014
    Date of Patent: December 13, 2016
    Assignee: Corning Incorporated
    Inventors: Sasha Marjanovic, Garrett Andrew Piech, Shyamala Shanmugam, Carlos Alberto Pons Siepermann, Sergio Tsuda, Zsigmond Varga, Robert Stephen Wagner
  • Publication number: 20160207820
    Abstract: A method of providing locally annealed regions for a glass article comprising: (a) providing a strengthened glass article having a first surface compressive stress and a first depth of layer of compressive stress; (b) targeting first portions of the glass article on a first side thereof; (c) annealing the targeted first portions to a second surface compressive stress and a second depth of layer of compressive stress; and (d) repeating steps (b) and (c) to create a pattern of annealed portions of the glass article on the first side thereof. Targeted annealing can be done e.g. by focusing a laser or using microwave energy or an induction source. A method for making a laminate structure comprising a first glass layer (12), a second glass layer (16), and at least one polymer interlayer (14) intermediate the first and second glass layers.
    Type: Application
    Filed: August 21, 2014
    Publication date: July 21, 2016
    Inventors: Thomas Michael Cleary, Mark Stephen Friske, Robert Stephen Wagner
  • Patent number: 9150450
    Abstract: A sealing device and method are described herein that can be used to manufacture a hermetically sealed glass package. In one embodiment, the hermetically sealed glass package is suitable to protect thin film devices which are sensitive to the ambient environment (e.g., oxygen, moisture). Some examples of such glass packages are organic emitting light diode (OLED) displays, sensors, and other optical devices. The present invention is demonstrated using an OLED display as an example.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: October 6, 2015
    Assignee: Corning Incorporated
    Inventors: Keith James Becken, Stephan Lvovich Logunov, Robert Stephen Wagner, Aiyu Zhang, Lu Zhang
  • Publication number: 20150232369
    Abstract: The present invention relates to a laser cutting technology for cutting and separating thin substrates of transparent materials, for example to cutting of display glass compositions mainly used for production of Thin Film Transistors (TFT) devices. The described laser process can be used to make straight cuts, for example at a speed of >1 m/sec, to cut sharp radii outer corners (<1 mm), and to create arbitrary curved shapes including forming interior holes and slots. A method of laser processing an alkaline earth boro-aluminosilicate glass composite workpiece includes focusing a pulsed laser beam into a focal line. The focal line is directed into the glass composite workpiece, generating induced absorption within the material. The workpiece and the laser beam are translated relative to each other to form a plurality of defect lines along a contour, with adjacent defect lines have a spacing of 0.1-20 microns.
    Type: Application
    Filed: October 31, 2014
    Publication date: August 20, 2015
    Inventors: Sasha Marjanovic, Albert Roth Nieber, Garrett Andrew Piech, Helmut Schillinger, Sergio Tsuda, Robert Stephen Wagner
  • Publication number: 20150165560
    Abstract: The present invention relates to a process for cutting and separating interior contours in thin substrates of transparent materials, in particular glass. The method involves the utilization of an ultra-short pulse laser to form perforation or holes in the substrate, that may be followed by use of a CO2 laser beam to promote full separation about the perforated line.
    Type: Application
    Filed: November 7, 2014
    Publication date: June 18, 2015
    Inventors: Thomas Hackert, Sasha Marjanovic, Garrett Andrew Piech, Sergio Tsuda, Robert Stephen Wagner
  • Publication number: 20150166395
    Abstract: Forming holes in a material includes focusing a pulsed laser beam into a laser beam focal line oriented along the beam propagation direction and directed into the material, the laser beam focal line generating an induced absorption within the material, the induced absorption producing a defect line along the laser beam focal line within the material, and translating the material and the laser beam relative to each other, thereby forming a plurality of defect lines in the material, and etching the material in an acid solution to produce holes greater than 1 micron in diameter by enlarging the defect lines in the material. A glass article includes a stack of glass substrates with formed holes of 1-100 micron diameter extending through the stack.
    Type: Application
    Filed: November 7, 2014
    Publication date: June 18, 2015
    Inventors: Sasha Marjanovic, Garrett Andrew Piech, Shyamala Shanmugam, Carlos Alberto Pons Siepermann, Sergio Tsuda, Zsigmond Varga, Robert Stephen Wagner
  • Publication number: 20150166396
    Abstract: Forming holes in a material includes focusing a pulsed laser beam into a laser beam focal line oriented along the beam propagation direction and directed into the material, the laser beam focal line generating an induced absorption within the material, the induced absorption producing a defect line along the laser beam focal line within the material, and translating the material and the laser beam relative to each other, thereby forming a plurality of defect lines in the material, and etching the material in an acid solution to produce holes greater than 1 micron in diameter by enlarging the defect lines in the material. A glass article includes a stack of glass substrates with formed holes of 1-100 micron diameter extending through the stack.
    Type: Application
    Filed: November 7, 2014
    Publication date: June 18, 2015
    Inventors: Sasha Marjanovic, Garrett Andrew Piech, Shyamala Shanmugam, Sergio Tsuda, Robert Stephen Wagner
  • Publication number: 20150166397
    Abstract: A system for laser drilling of a material includes a pulsed laser configured to produce a pulsed laser beam having a wavelength less than or equal to about 850 nm, the wavelength selected such that the material is substantially transparent at this wavelength. The system further includes an optical assembly positioned in the beam path of the laser, configured to transform the laser beam into a laser beam focal line oriented along the beam propagation direction, on a beam emergence side of the optical assembly.
    Type: Application
    Filed: October 31, 2014
    Publication date: June 18, 2015
    Inventors: Sasha Marjanovic, Garrett Andrew Piech, Sergio Tsuda, Robert Stephen Wagner
  • Publication number: 20150165548
    Abstract: Processes of chamfering and/or beveling an edge of a glass or other substrate of arbitrary shape using lasers are described herein. Three general methods to produce chamfers on glass substrates are disclosed. The first method involves cutting the edge with the desired chamfer shape utilizing an ultra-short pulse laser. Treatment with the ultra-short laser may be optionally followed by a CO2 laser for fully automated separation. The second method is based on thermal stress peeling of a sharp edge corner, and it has been demonstrated to work with different combination of an ultrashort pulse and/or CO2 lasers. A third method relies on stresses induced by ion exchange to effect separation of material along a fault line produced by an ultra-short laser to form a chamfered edge of desired shape.
    Type: Application
    Filed: October 31, 2014
    Publication date: June 18, 2015
    Inventors: Sasha Marjanovic, Albert Roth Nieber, Garrett Andrew Piech, Helmut Schillinger, Sergio Tsuda, Robert Stephen Wagner
  • Publication number: 20150165562
    Abstract: A method of laser processing a material to form a separated part. The method includes focusing a pulsed laser beam into a laser beam focal line, viewed along the beam propagation direction, directed into the material, the laser beam focal line generating an induced absorption within the material, the induced absorption producing a hole or fault line along the laser beam focal line within the material, and directing a defocused carbon dioxide (CO2) laser from a distal edge of the material over the plurality of holes to a proximal edge of the material.
    Type: Application
    Filed: October 31, 2014
    Publication date: June 18, 2015
    Inventors: Sasha Marjanovic, Garrett Andrew Piech, Sergio Tsuda, Robert Stephen Wagner
  • Publication number: 20150166394
    Abstract: Methods are provided for laser processing arbitrary shapes of molded 3D thin transparent brittle parts from substrates with particular interest in substrates formed from strengthened or non-strengthened Corning Gorilla® glass (all codes). The developed laser methods can be tailored for manual separation of the parts from the panel or full laser separation by thermal stressing the desired profile. Methods can be used to form 3D surfaces with small radii of curvature. The method involves the utilization of an ultra-short pulse laser that may be optionally followed by a CO2 laser for fully automated separation.
    Type: Application
    Filed: October 31, 2014
    Publication date: June 18, 2015
    Inventors: Sasha Marjanovic, Albert Roth Nieber, Garrett Andrew Piech, Sergio Tsuda, Robert Stephen Wagner
  • Publication number: 20150166391
    Abstract: The present disclosure relates to a process for cutting and separating arbitrary shapes of thin substrates of transparent materials, particularly tailored composite fusion drawn glass sheets, and the disclosure also relates to a glass article prepared by the method. The developed laser method can be tailored for manual separation of the parts from the panel or full laser separation by thermally stressing the desired profile. The self-separation method involves the utilization of an ultra-short pulse laser that can be followed by a CO2 laser (coupled with high pressure air flow) for fully automated separation.
    Type: Application
    Filed: October 31, 2014
    Publication date: June 18, 2015
    Inventors: Sasha Marjanovic, Garrett Andrew Piech, Sergio Tsuda, Robert Stephen Wagner
  • Publication number: 20150165563
    Abstract: A method of laser drilling, forming a perforation, cutting, separating or otherwise processing a material includes focusing a pulsed laser beam into a laser beam focal line, and directing the laser beam focal line into a workpiece comprising a stack including at least: a first layer, facing the laser beam, the first layer being the material to be laser processed, a second layer comprising a carrier layer, and a laser beam disruption element located between the first and second layers, the laser beam focal line generating an induced absorption within the material of the first layer, the induced absorption producing a defect line along the laser beam focal line within the material of the first layer. The beam disruption element may be a beam disruption layer or a beam disruption interface.
    Type: Application
    Filed: October 31, 2014
    Publication date: June 18, 2015
    Inventors: Robert George Manley, Sasha Marjanovic, Garrett Andrew Piech, Sergio Tsuda, Robert Stephen Wagner
  • Publication number: 20150166393
    Abstract: This laser cutting process makes use of a short pulse laser in combination with optics that generate a focal line to fully perforate the body of a range of ion-exchangeable glass compositions. The glass is moved relative to the laser beam to create perforated lines that trace out the shape of any desired parts. The glass may be cut pre-ion exchange, or may be cut post-ion exchange. The laser creates hole-like defect zones that penetrate the full depth the glass, of approximately 1 micron in diameter. These perforations or defect regions are generally spaced from 1 to 15 microns apart.
    Type: Application
    Filed: October 31, 2014
    Publication date: June 18, 2015
    Inventors: Sasha Marjanovic, Garrett Andrew Piech, Sergio Tsuda, Robert Stephen Wagner
  • Publication number: 20150059411
    Abstract: A method of separating a thin glass substrate from a carrier plate to which edge portions of the glass substrate are bonded, including irradiating a surface of the glass substrate with a pulsed laser beam, the laser beam moving along a plurality of parallel scan paths within a raster envelope, producing relative motion between the raster envelope and the glass substrate so that the raster envelope is moved along an irradiation path on the unbonded central portion. The irradiating produces ablation of the glass substrate along the irradiation path that forms a channel having a width W1 at the first surface greater than a width W2 at the second surface and extending through the thickness of the glass substrate, thus separating a thin glass sheet from the glass substrate-carrier plate assembly.
    Type: Application
    Filed: August 22, 2014
    Publication date: March 5, 2015
    Inventors: Geunsik Lim, Robert Stephen Wagner, James Joseph Watkins
  • Patent number: 8916072
    Abstract: Gradient-index (GRIN) lens fabrication employing laser pulse width duration control, and related components, systems, and methods are disclosed. GRIN lenses can be fabricated from GRIN rods by controlling the pulse width emission duration of a laser beam emitted by a laser to laser cut the GRIN rod, as the GRIN rod is disposed in rotational relation to the laser beam. Controlling laser pulse width emission duration can prevent or reduce heat accumulation in the GRIN rod during GRIN lens fabrication. It is desired that the end faces of GRIN lenses are planar to facilitate light collimation, easy bonding or fusing of the GRIN lens to optical fibers to reduce optical losses, polishing to avoid spherical aberrations, and/or cleaning the end faces when disposed in a fiber optic connector, as non-limiting examples.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: December 23, 2014
    Assignee: Corning Cable Systems LLC
    Inventors: David Matthew Berg, Jeffrey Dean Danley, Jeffery Alan DeMeritt, Robert Stephen Wagner, James Joseph Watkins