Patents by Inventor Roger Mervyn Lloyd Foote

Roger Mervyn Lloyd Foote has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110318854
    Abstract: A method mounting a MEMS integrated circuit on a substrate. The method includes the steps of: (a) providing a film frame tape supported by a wafer film frame, the film frame tape having the plurality of MEMS integrated circuits releasably attached via respective frontsides to the film frame tape; (b) treating a backside surface oxide layer of each MEMS integrated circuit with liquid ammonia; (c) positioning a substrate at the backside of one of said MEMS integrated circuits; (d) positioning a bonding tool on a zone of the film frame tape aligned with the MEMS integrated circuit; and (e) applying a bonding force from the bonding tool so as to bond the backside of the MEMS integrated circuit to the substrate.
    Type: Application
    Filed: September 4, 2011
    Publication date: December 29, 2011
    Inventors: Roger Mervyn Lloyd Foote, Kia Silverbrook
  • Patent number: 8030175
    Abstract: A method of bonding an integrated circuit to an adhesive substrate. The integrated circuit is one of a plurality of integrated circuits, each having a respective frontside releasably attached to a film frame tape supported by a wafer film frame. The method includes the steps of: (a) selecting one of the integrated circuits for bonding to the adhesive substrate; (b) positioning the adhesive substrate at a backside of the selected integrated circuit; (c) positioning a bonding tool on a zone of the film frame tape, the zone being aligned with the selected integrated circuit; and (d) applying a bonding force from the bonding tool through the film frame tape and the selected integrated circuit onto the adhesive substrate, so as to bond the backside of the selected integrated circuit to the substrate.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: October 4, 2011
    Assignee: Silverbrook Research Pty Ltd
    Inventors: Roger Mervyn Lloyd Foote, Kia Silverbrook
  • Publication number: 20110228010
    Abstract: An inkjet printhead includes a plurality of ink chambers fed by a common ink inlet, the plurality of ink chambers sharing a common roof structure; a plurality of heater elements respectively allocated to each of ink chambers; a plurality of nozzle apertures defined through the common roof structure and respectively aligned with the heater element of each ink chamber; and a bubble vent defined in the common roof of the ink chambers and aligned with the common ink inlet, the bubble vent sized to allow ink surface tension to restrict an egress of ink, and permit egress of gas bubbles therefrom.
    Type: Application
    Filed: May 30, 2011
    Publication date: September 22, 2011
    Inventors: Kia Silverbrook, Roger Mervyn Lloyd Foote, Angus John North, Jennifer Mia Fishburn, Paul David Lunsmann, Lakshmi C.S., Frederik Jacobus Crous, Matthew Stewart Walker, Samuel George Mallinson, Paul Justin Reichl
  • Patent number: 7980674
    Abstract: An inkjet printer includes a printhead having a plurality of ink chambers fed be an ink inlet, each ink chamber having a heater element for ejecting drops of ink from a nozzle aperture of each chamber; a plurality of pressure pulse diffusing structure positioned between the plurality of ink chambers fed by the ink inlet, the plurality of pressure pulse diffusing structures for retarding a propagation of pressure waves generated by each ink chamber to adjacent ink chambers; and a controller for receiving print data and generating drive pulses to energize the heater elements in accordance with the print data. The controller increases the drive pulse energy during the printhead lifetime such that the drive pulse energy is never less than that of a preceding drive pulse.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: July 19, 2011
    Assignee: Silverbrook Research Pty Ltd
    Inventors: Kia Silverbrook, Roger Mervyn Lloyd Foote, Angus John North, Jennifer Mia Fishburn, Paul David Lunsmann, Lakshmi Channarayapatna Shankar, Frederik Jacobus Crous, Matthew Stewart Walker, Samuel George Mallinson, Paul Justin Reichl
  • Publication number: 20110122183
    Abstract: An inkjet printer includes a printhead having a plurality of ink chambers fed be an ink inlet, each ink chamber having a heater element for ejecting drops of ink from a nozzle aperture of each chamber; a plurality of pressure pulse diffusing structure positioned between the plurality of ink chambers fed by the ink inlet, the plurality of pressure pulse diffusing structures for retarding a propagation of pressure waves generated by each ink chamber to adjacent ink chambers; and a controller for receiving print data and generating drive pulses to energize the heater elements in accordance with the print data. The controller increases the drive pulse energy during the printhead lifetime such that the drive pulse energy is never less than that of a preceding drive pulse.
    Type: Application
    Filed: January 31, 2011
    Publication date: May 26, 2011
    Inventors: Kia Silverbrook, Roger Mervyn Lloyd Foote, Angus John North, Jennifer Mia Fishburn, Paul David Lunsmann, Lakshmi C.S., Frederik Jacobus Crous, Matthew Stewart Walker, Samuel George Mallinson, Paul Justin Reichl
  • Patent number: 7901056
    Abstract: An inkjet printer that has a printhead with an array of ejection devices for ejecting drops of liquid onto a media substrate. Each of the ejection devices having a chamber for holding liquid, a nozzle in fluid communication with the chamber and a heater positioned in the chamber for contact with the liquid such that resistive heating of the heater generates a vapor bubble that ejects a drop of the liquid through the nozzle. The printer also has a controller for receiving print data and generating drive pulses to energize the heaters in accordance with the print data. The controller increases the drive pulse energy during the printhead lifetime.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: March 8, 2011
    Assignee: Silverbrook Research Pty Ltd
    Inventors: Kia Silverbrook, Roger Mervyn Lloyd Foote, Angus John North, Jennifer Mia Fishburn, Paul David Lunsmann, Channarayapatna Shankar Lakshmi, Frederik Jacobus Crous, Matthew Stewart Walker, Samuel George Mallinson, Paul Justin Reichl
  • Patent number: 7874646
    Abstract: A MEMS vapor bubble generator includes a chamber for holding liquid; and a heater positioned in the chamber, the heater being formed using a sputtering technique. The heater is formed from a superalloy material. The superalloy material of the heater is in direct contact with the liquid, without any intervening protective coating. The superalloy has a crystalline structure with a grain size less than 100 nano-meters. The superalloy is MCrAlX, where M is one or more of Ni, Co, Fe with M contributing at least 50% by weight, Cr contributing between 8% and 35% by weight, Al contributing more than zero but less than 8% by weight, and X contributing less than 25% by weight, with X consisting of zero or more other elements, preferably including but not limited to Mo, Re, Ru, Ti, Ta, V, W, Nb, Zr, B, C, Si, Y, Hf.
    Type: Grant
    Filed: December 20, 2009
    Date of Patent: January 25, 2011
    Assignee: Silverbrook Research Pty Ltd
    Inventors: Kia Silverbrook, Roger Mervyn Lloyd Foote, Angus John North, Jennifer Mia Fishburn, Paul David Lunsmann, Alexandra Artemis Papadakis, Channarayapatna Shankar Lakshmi, Frederik Jacobus Clous, Matthew Stewart Walker, Samuel George Mallinson, Paul Justin Reichl
  • Patent number: 7784915
    Abstract: A MEMS vapor bubble generator with a chamber for holding liquid and a heater positioned in the chamber for heating the liquid above its bubble nucleation point to form a vapor bubble; wherein, the heater has a microstructure with a grain size less than 100 nanometers.
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: August 31, 2010
    Assignee: Silverbrook Research Pty Ltd
    Inventors: Kia Silverbrook, Roger Mervyn Lloyd Foote, Angus John North, Jennifer Mia Fishburn, Paul David Lunsmann, Alexandra Artemis Papadakis, Channarayapatna Shankar Lakshmi, Frederik Jacobus Crous, Matthew Stewart Walker, Samuel George Mallinson, Paul Justin Reichl
  • Publication number: 20100149291
    Abstract: A printhead assembly for a pagewidth printer arrangement includes a channel shaped member; and a number of printhead tiles located in the channel shaped member. Each tile includes a printhead integrated circuit (IC) carrier member for receiving a printhead IC; and an ink ducting member that mates with the carrier member and defines ink ducts for supplying the printhead IC with ink via the carrier member. The carrier member is a first molding that defines a channel in which the associated printhead IC is received. The first molding has conductive ribs on one side of the channel, the conductive ribs wired to electrical contacts of the printhead IC.
    Type: Application
    Filed: February 24, 2010
    Publication date: June 17, 2010
    Inventors: Roger Mervyn Lloyd Foote, Tobin Allen King, Garry Raymond Jackson, Kia Silverbrook
  • Publication number: 20100151600
    Abstract: A method of bonding an integrated circuit to an adhesive substrate. The integrated circuit is one of a plurality of integrated circuits, each having a respective frontside releasably attached to a film frame tape supported by a wafer film frame. The method includes the steps of: (a) selecting one of the integrated circuits for bonding to the adhesive substrate; (b) positioning the adhesive substrate at a backside of the selected integrated circuit; (c) positioning a bonding tool on a zone of the film frame tape, the zone being aligned with the selected integrated circuit; and (d) applying a bonding force from the bonding tool through the film frame tape and the selected integrated circuit onto the adhesive substrate, so as to bond the backside of the selected integrated circuit to the substrate.
    Type: Application
    Filed: February 24, 2010
    Publication date: June 17, 2010
    Inventors: Roger Mervyn Lloyd Foote, Kia Silverbrook
  • Publication number: 20100128090
    Abstract: A MEMS vapor bubble generator includes a chamber for holding liquid; and a heater positioned in the chamber, the heater being formed using a sputtering technique. The heater is formed from a superalloy material. The superalloy material of the heater is in direct contact with the liquid, without any intervening protective coating. The superalloy has a crystalline structure with a grain size less than 100 nano-metres. The superalloy is MCrAlX, where M is one or more of Ni, Co, Fe with M contributing at least 50% by weight, Cr contributing between 8% and 35% by weight, Al contributing more than zero but less than 8% by weight, and X contributing less than 25% by weight, with X consisting of zero or more other elements, preferably including but not limited to Mo, Re, Ru, Ti, Ta, V, W, Nb, Zr, B, C, Si, Y, Hf.
    Type: Application
    Filed: December 20, 2009
    Publication date: May 27, 2010
    Inventors: Kia Silverbrook, Roger Mervyn Lloyd Foote, Angus John North, Jennifer Mia Fishburn, Paul David Lunsmann, Alexandra Artemis Papadakis, Channarayapatna Shankar Lakshmi, Frederik Jacobus Crous, Matthew Stewart Walker, Samuel George Mallinson, Paul Justin Reichl
  • Patent number: 7678667
    Abstract: A method of bonding an integrated circuit to a substrate is provided. The integrated circuit is one of a plurality of integrated circuits, each having a respective frontside releasably attached to a film frame tape supported by a wafer film frame. The method comprises the steps of: (a) positioning a substrate at a backside of the integrated circuit; (c) positioning a bonding tool on a zone of the film frame tape, the zone being aligned with the integrated circuit; and (c) applying a bonding force from the bonding tool, through the film frame tape and the integrated circuit, onto the substrate.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: March 16, 2010
    Assignee: Silverbrook Research Pty Ltd
    Inventors: Roger Mervyn Lloyd Foote, Kia Silverbrook
  • Patent number: 7673966
    Abstract: A printhead assembly for a pagewidth printer arrangement includes a channel shaped member. A number of printhead tiles are located in the channel shaped member. Each tile has a printhead integrated circuit (IC) carrier member for receiving a printhead IC and an ink ducting member that mates with the carrier member and defines ink ducts for supplying the printhead IC with ink via the carrier member.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: March 9, 2010
    Assignee: Silverbrook Research Pty Ltd
    Inventors: Roger Mervyn Lloyd Foote, Tobin Allen King, Garry Raymond Jackson, Kia Silverbrook
  • Patent number: 7654645
    Abstract: A MEMS vapor bubble generator with a chamber for holding liquid and a heater positioned in the chamber for heating the liquid above its bubble nucleation point to form a vapour bubble; wherein, the heater is formed from a superalloy.
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: February 2, 2010
    Assignee: Silverbrook Research Pty Ltd
    Inventors: Kia Silverbrook, Roger Mervyn Lloyd Foote, Angus John North, Jennifer Mia Fishburn, Paul David Lunsmann, Alexandra Artemis Papadakis, Channarayapatna Shankar Lakshmi, Frederik Jacobus Crous, Matthew Stewart Walker, Samuel George Mallinson, Paul Justin Reichl
  • Publication number: 20090066742
    Abstract: An inkjet printer that has a printhead with an array of ejection devices for ejecting drops of liquid onto a media substrate. Each of the ejection devices having a chamber for holding liquid, a nozzle in fluid communication with the chamber and a heater positioned in the chamber for contact with the liquid such that resistive heating of the heater generates a vapour bubble that ejects a drop of the liquid through the nozzle. The printer also has a controller for receiving print data and generating drive pulses to energize the heaters in accordance with the print data. The controller increases the drive pulse energy during the printhead lifetime.
    Type: Application
    Filed: November 10, 2008
    Publication date: March 12, 2009
    Inventors: Kia Silverbrook, Roger Mervyn Lloyd Foote, Angus John North, Jennifer Mia Fishburn, Paul David Lunsmann, Lakshmi C.S., Fredrik Jacobus Crous, Matthew Stewart Walker, Samuel George Mallinson, Paul Justin Reichl
  • Publication number: 20080318352
    Abstract: A method of bonding an integrated circuit to a substrate is provided. The integrated circuit is one of a plurality of integrated circuits, each having a respective frontside releasably attached to a film frame tape supported by a wafer film frame. The method comprises the steps of: (a) positioning a substrate at a backside of the integrated circuit; (c) positioning a bonding tool on a zone of the film frame tape, the zone being aligned with the integrated circuit; and (c) applying a bonding force from the bonding tool, through the film frame tape and the integrated circuit, onto the substrate.
    Type: Application
    Filed: June 20, 2007
    Publication date: December 25, 2008
    Inventors: Roger Mervyn Lloyd Foote, Kia Silverbrook
  • Publication number: 20080283197
    Abstract: A device for removing MEMS devices (2) from a handle substrate (1), where the MEMS devices are individually bonded to it via a thermal release adhesive (3) that reduces its adhesion when heated above a threshold temperature. The MEMS devices (2) are individually heated with a heat source (10) to conductively heat the thermal release adhesive (11) above the threshold temperature. With the adhesive (11) directly in contact with the back side (5) of the MEMS device (2) no longer bonding it to the glass handle (1), the devices (2) can be individually removed by a die picker (6). This quickly heats the adhesive to release each die in about 1 second. This is comparable to UV release adhesive and does not require a prior 30 minute drying bake. Furthermore, by heating the die to conductively heat the adhesive, only that adhesive which is closely localized to the die is heated. The adhesive that bonds the adjacent dies to the glass handle remains unaffected.
    Type: Application
    Filed: May 6, 2008
    Publication date: November 20, 2008
    Inventors: Paul Andrew Papworth, Jason Mark Thelander, Roger Mervyn Lloyd Foote, Andrew Leon Vella, David McLeod Johnstone, Kia Silverbrook
  • Publication number: 20080283190
    Abstract: A method of removing MEMS devices (2) from a handle substrate (1), where the MEMS devices are individually bonded to it via a thermal release adhesive (3) that reduces its adhesion when heated above a threshold temperature. The method heats the MEMS devices (2) individually with a heat source (10) to conductively heat the thermal release adhesive (11) above the threshold temperature. With the adhesive (11) directly in contact with the back side (5) of the MEMS device (2) no longer bonding it to the glass handle (1), the devices (2) can be individually removed by a die picker (6). This method quickly heats the adhesive to release each die in about 1 second. This is comparable to UV release adhesive and does not require a prior 30 minute drying bake. Furthermore, heating the die by conduction, will in turn conductively heat the adhesives that only that adhesive which is closely localized to the die is released. The adhesive that bonds the adjacent dies to the glass handle remains unaffected.
    Type: Application
    Filed: May 6, 2008
    Publication date: November 20, 2008
    Inventors: Paul Andrew Papworth, Jason Mark Thelander, Roger Mervyn Lloyd Foote, Andrew Leon Vella, David McLeod Johnstone, Kia Silverbrook
  • Publication number: 20080283198
    Abstract: A device for removing MEMS devices (2) from a handle substrate (1), where the MEMS devices are individually bonded to it via a thermal release adhesive (3) that reduces its adhesion when heated above a threshold temperature. The MEMS devices (2) are individually heated (16) to conductively heat the thermal release adhesive (11) above the threshold temperature. With the adhesive (11) directly in contact with the back side (5) of the MEMS device (2) no longer bonding it to the glass handle (1), the devices (2) can be individually removed by a die picker (6). This quickly heats the adhesive to release each die in about 1 second. This is comparable to UV release adhesive and does not require a prior 30 minute drying bake. Furthermore, by heating the die to conductively heat the adhesive, only that adhesive which is closely localized to the die is heated. The adhesive that bonds the adjacent dies to the glass handle remains unaffected.
    Type: Application
    Filed: May 6, 2008
    Publication date: November 20, 2008
    Inventors: Paul Andrew Papworth, Jason Mark Thelander, Roger Mervyn Lloyd Foote, Andrew Leon Vella, David McLeod Johnstone, Kia Silverbrook
  • Publication number: 20080259113
    Abstract: A printhead assembly for a pagewidth printer arrangement includes a channel shaped member. A number of printhead tiles are located in the channel shaped member. Each tile has a printhead integrated circuit (IC) carrier member for receiving a printhead IC and an ink ducting member that mates with the carrier member and defines ink ducts for supplying the printhead IC with ink via the carrier member.
    Type: Application
    Filed: June 24, 2008
    Publication date: October 23, 2008
    Inventors: Roger Mervyn Lloyd Foote, Tobin Allen King, Garry Raymond Jackson, Kia Silverbrook