Patents by Inventor Rolf Scheben

Rolf Scheben has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11874291
    Abstract: A method for temperature compensation of a MEMS sensor. The method includes: in a balancing step, a temperature gradient is produced by a thermal element and a first and a second temperature are determined at a first and a second temperature measurement point, wherein a deflection of a movable structure produced by the temperature gradient is measured and a compensation value is ascertained dependent on the first and second temperature and the deflection; in a measurement step, a physical stimulus is measured by way of a deflection of the movable structure and a third and fourth temperature is determined at the first and second temperature measurement points; in a compensation step, a measured value of the physical stimulus is ascertained dependent on the measured deflection, the third and fourth temperature and the compensation value. A method is also provided including: a regulation step, and a measurement step.
    Type: Grant
    Filed: April 27, 2022
    Date of Patent: January 16, 2024
    Assignee: ROBERT BOSCH GMBH
    Inventors: Amin Jemili, Jochen Reinmuth, Dusan Radovic, Rolf Scheben, Steffen Becker
  • Patent number: 11860184
    Abstract: A micromechanical structure including a substrate, a moveable seismic mass, a detection structure, and a main spring. The seismic mass is connected to the substrate using the main spring. A first direction and a second direction perpendicular thereto define a main extension plane of the substrate. The detection structure detects a deflection of the seismic mass and includes first electrodes mounted at the seismic mass and second electrodes mounted at the substrate. The first electrodes and second electrodes have a two-dimensional extension in the first and second directions. The micromechanical structure has a graduated stop structure including a first spring stop, a second spring stop, and a fixed stop.
    Type: Grant
    Filed: September 16, 2021
    Date of Patent: January 2, 2024
    Assignee: ROBERT BOSCH GMBH
    Inventors: Cristian Nagel, Johannes Classen, Lars Tebje, Rolf Scheben, Rudy Eid
  • Patent number: 11719539
    Abstract: A micromechanical component for a yaw rate sensor. The component includes a substrate having a substrate surface, a first rotor mass developed in one piece, which is able to be set into a first torsional vibration about a first axis of rotation aligned perpendicular to the substrate surface, and at least one first component of the micromechanical component. The first rotor mass is connected to the at least one first component via at least one first spring element. The at least one first spring element extends through a lateral concavity on the first rotor mass in each case and is connected to a recessed edge region of the first rotor mass. A yaw rate sensor and a production method for a micromechanical component for a yaw rate sensor, are also described.
    Type: Grant
    Filed: April 20, 2021
    Date of Patent: August 8, 2023
    Assignee: ROBERT BOSCH GMBH
    Inventors: Matthias Kuehnel, Nils Felix Kuhlmann, Robert Maul, Rolf Scheben, Steffen Markisch, Thorsten Balslink, Wolfram Geiger
  • Patent number: 11697583
    Abstract: A micromechanical device including a substrate, a movable mass, and a stop spring structure, which includes a stop. The substrate includes a substrate surface in parallel to a main extension plane and the movable mass is situated movably above the substrate surface in relation to the substrate. The stop spring structure is connected to the movable mass. The stop is designed to strike against the substrate surface in the event of a deflection of the movable mass in a z direction, perpendicular to the main extension plane. The stop spring structure, at the location of the stop, includes a first spring constant, a second spring constant, in parallel to the main extension plane, and a third spring constant, in parallel to the main extension plane and perpendicular to the x direction. The first spring constant is greater than the second spring constant and/or is greater than the third spring constant.
    Type: Grant
    Filed: April 7, 2021
    Date of Patent: July 11, 2023
    Assignee: ROBERT BOSCH GMBH
    Inventors: Cristian Nagel, Johannes Classen, Rolf Scheben, Rudy Eid
  • Publication number: 20230194262
    Abstract: A sensor system. The sensor system includes a rotation rate sensor and a control unit, the rotation rate sensor including a seismic mass and being configured to drive a movement of the seismic mass with the aid of a driving force, the control unit being configured to detect a free fall of the sensor system and to deactivate the driving force in the event of a detection of the free fall. A method for securing a sensor system, in a detection step a free fall of the sensor system being detected by the control unit, and in a securing step the driving force being deactivated by the control unit, is also described.
    Type: Application
    Filed: November 30, 2022
    Publication date: June 22, 2023
    Inventors: Alexander Tsapkolenko, Hartmut Ruf, Mirko Hofmann, Rolf Scheben
  • Publication number: 20230095336
    Abstract: A micromechanical component for a rotation rate sensor. The micromechanical component includes two rotor masses, mirror symmetrical with respect to a first plane of symmetry aligned perpendicularly to a substrate surface and passing through the center of the two rotor masses, which may be set in rotational vibrating motion about rotational axes aligned perpendicularly to the substrate surface, and four seismic masses, mirror symmetrical with respect to the first plane of symmetry, deflectable in parallel to the first plane of symmetry using the two rotor masses set in their respective rotational vibrating motion. The first rotor mass and a first pair of the four seismic masses connected thereto are mirror symmetrical to the second rotor mass and to a second pair of the four seismic masses connected thereto with respect to a second plane of symmetry aligned perpendicularly to the substrate surface and to the first plane of symmetry.
    Type: Application
    Filed: April 14, 2021
    Publication date: March 30, 2023
    Inventors: Matthias Kuehnel, Nils Felix Kuhlmann, Robert Maul, Rolf Scheben, Steffen Markisch, Thorsten Balslink, Wolfram Geiger
  • Publication number: 20220357356
    Abstract: A method for temperature compensation of a MEMS sensor. The method includes: in a balancing step, a temperature gradient is produced by a thermal element and a first and a second temperature are determined at a first and a second temperature measurement point, wherein a deflection of a movable structure produced by the temperature gradient is measured and a compensation value is ascertained dependent on the first and second temperature and the deflection; in a measurement step, a physical stimulus is measured by way of a deflection of the movable structure and a third and fourth temperature is determined at the first and second temperature measurement points; in a compensation step, a measured value of the physical stimulus is ascertained dependent on the measured deflection, the third and fourth temperature and the compensation value. A method is also provided including: a regulation step, and a measurement step.
    Type: Application
    Filed: April 27, 2022
    Publication date: November 10, 2022
    Inventors: Amin Jemili, Jochen Reinmuth, Dusan Radovic, Rolf Scheben, Steffen Becker
  • Patent number: 11485630
    Abstract: A micromechanical sensor. The sensor includes a substrate, a cap element situated on the substrate, at least one seismic mass that is deflectable orthogonal to the cap element, an internal pressure that is lower by a defined amount relative to the surrounding environment prevailing inside a cavity, and a compensating element designed to provide a homogenization of a temperature gradient field in the cavity during operation of the micromechanical sensor.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: November 1, 2022
    Assignee: Robert Bosch GmbH
    Inventors: Jan Waldmann, Rolf Scheben, Rudy Eid
  • Publication number: 20220091154
    Abstract: A micromechanical structure including a substrate, a moveable seismic mass, a detection structure, and a main spring. The seismic mass is connected to the substrate using the main spring. A first direction and a second direction perpendicular thereto define a main extension plane of the substrate. The detection structure detects a deflection of the seismic mass and includes first electrodes mounted at the seismic mass and second electrodes mounted at the substrate. The first electrodes and second electrodes have a two-dimensional extension in the first and second directions. The micromechanical structure has a graduated stop structure including a first spring stop, a second spring stop, and a fixed stop.
    Type: Application
    Filed: September 16, 2021
    Publication date: March 24, 2022
    Inventors: Cristian Nagel, Johannes Classen, Lars Tebje, Rolf Scheben, Rudy Eid
  • Publication number: 20220048759
    Abstract: A microelectromechanical system, including a substrate having a major plane of extension. The microelectromechanical system includes a mass structure. The mass structure is formed to be movable relative to the substrate in a vertical direction, perpendicularly to the major plane of extension. The mass structure includes an electrode structure. The substrate includes a counter-electrode structure. The electrode structure and the counter-electrode structure are coupled capacitively. The mass structure has a deformation in a resting state of the microelectromechanical system. The electrode structure and/or the counter-electrode structure are formed as a function of the deformation of the mass structure.
    Type: Application
    Filed: August 6, 2021
    Publication date: February 17, 2022
    Inventor: Rolf Scheben
  • Publication number: 20210333103
    Abstract: A micromechanical component for a yaw rate sensor. The component includes a substrate having a substrate surface, a first rotor mass developed in one piece, which is able to be set into a first torsional vibration about a first axis of rotation aligned perpendicular to the substrate surface, and at least one first component of the micromechanical component. The first rotor mass is connected to the at least one first component via at least one first spring element. The at least one first spring element extends through a lateral concavity on the first rotor mass in each case and is connected to a recessed edge region of the first rotor mass. A yaw rate sensor and a production method for a micromechanical component for a yaw rate sensor, are also described.
    Type: Application
    Filed: April 20, 2021
    Publication date: October 28, 2021
    Inventors: Matthias Kuehnel, Nils Felix Kuhlmann, Robert Maul, Rolf Scheben, Steffen Markisch, Thorsten Balslink, Wolfram Geiger
  • Publication number: 20210323809
    Abstract: A micromechanical device including a substrate, a movable mass, and a stop spring structure, which includes a stop. The substrate includes a substrate surface in parallel to a main extension plane and the movable mass is situated movably above the substrate surface in relation to the substrate. The stop spring structure is connected to the movable mass. The stop is designed to strike against the substrate surface in the event of a deflection of the movable mass in a z direction, perpendicular to the main extension plane. The stop spring structure, at the location of the stop, includes a first spring constant, a second spring constant, in parallel to the main extension plane, and a third spring constant, in parallel to the main extension plane and perpendicular to the x direction. The first spring constant is greater than the second spring constant and/or is greater than the third spring constant.
    Type: Application
    Filed: April 7, 2021
    Publication date: October 21, 2021
    Inventors: Cristian Nagel, Johannes Classen, Rolf Scheben, Rudy Eid
  • Publication number: 20210214213
    Abstract: A micromechanical sensor. The sensor includes a substrate, a cap element situated on the substrate, at least one seismic mass that is deflectable orthogonal to the cap element, an internal pressure that is lower by a defined amount relative to the surrounding environment prevailing inside a cavity, and a compensating element designed to provide a homogenization of a temperature gradient field in the cavity during operation of the micromechanical sensor.
    Type: Application
    Filed: June 6, 2019
    Publication date: July 15, 2021
    Inventors: Jan Waldmann, Rolf Scheben, Rudy Eid
  • Patent number: 10794928
    Abstract: A microelectromechanical component including, vertically at a distance from one another, a substrate device, a first, a second, and a third functional layer, a vertical stop being formed between the second and third functional layer, the vertical stop having a stop area on a surface of the second functional layer facing the third functional layer, wherein the second functional layer is connected to the first functional layer in a connecting area allocated to the stop area.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: October 6, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Benny Pekka Herzogenrath, Denis Gugel, Rolf Scheben, Rudy Eid
  • Patent number: 10753742
    Abstract: A micromechanical rate-of-rotation sensor includes a first Coriolis element. The micromechanical rate-of-rotation sensor further includes a first drive beam arranged along the first Coriolis element. The first drive beam is coupled via a first spring to the first Coriolis element. The micromechanical rate-of-rotation sensor further includes a first drive electrode carrier extending from the first drive beam in a direction opposite to the first Coriolis element. The first drive electrode carrier is configured to carry a multiplicity of first drive electrodes extending parallel to the first drive beam.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: August 25, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Reinhard Neul, Torsten Ohms, Robert Maul, Mirko Hattass, Christian Hoeppner, Odd-Axel Pruetz, Benjamin Schmidt, Rolf Scheben, Friedjof Heuck
  • Patent number: 10753743
    Abstract: A micromechanical yaw rate sensor includes a substrate and a rotationally oscillating mass having a rotationally oscillating mass bearing. The rotationally oscillating mass bearing includes a rocker bar, a rocker spring rod which resiliently connects the rocker bar to the substrate, and two support spring rods which resiliently connect, on opposite sides of the rocker spring rod, the rocker bar to the rotationally oscillating mass.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: August 25, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Reinhard Neul, Torsten Ohms, Robert Maul, Mirko Hattass, Christian Hoeppner, Odd-Axel Pruetz, Benjamin Schmidt, Rolf Scheben, Friedjof Heuck
  • Patent number: 10260879
    Abstract: A sensor drive includes at least one first seismic mass and an operating apparatus. The operating apparatus is configured to put the first seismic mass into oscillatory motion such that (i) a projection of the oscillatory motion of the first seismic mass onto a first spatial direction is a first harmonic oscillation of the first seismic mass at a first frequency, and (ii) a projection of the oscillatory motion of the first seismic mass onto a second spatial direction oriented at an angle to the first spatial direction is a second harmonic oscillation of the first seismic mass at a second frequency not equal to the first frequency. A method includes operating such a sensor device having at least one seismic mass.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: April 16, 2019
    Assignee: Robert Bosch GmbH
    Inventors: Robert Maul, Mirko Hattass, Rolf Scheben
  • Publication number: 20190056226
    Abstract: A micromechanical rate-of-rotation sensor includes a first Coriolis element. The micromechanical rate-of-rotation sensor further includes a first drive beam arranged along the first Coriolis element. The first drive beam is coupled via a first spring to the first Coriolis element. The micromechanical rate-of-rotation sensor further includes a first drive electrode carrier extending from the first drive beam in a direction opposite to the first Coriolis element. The first drive electrode carrier is configured to carry a multiplicity of first drive electrodes extending parallel to the first drive beam.
    Type: Application
    Filed: November 9, 2016
    Publication date: February 21, 2019
    Inventors: Reinhard Neul, Torsten Ohms, Robert Maul, Mirko Hattass, Christian Hoeppner, Odd-Axel Pruetz, Benjamin Schmidt, Rolf Scheben, Friedjof Heuck
  • Publication number: 20180334381
    Abstract: A microelectromechanical component including, vertically at a distance from one another, a substrate device, a first, a second, and a third functional layer, a vertical stop being formed between the second and third functional layer, the vertical stop having a stop area on a surface of the second functional layer facing the third functional layer, wherein the second functional layer is connected to the first functional layer in a connecting area allocated to the stop area.
    Type: Application
    Filed: May 9, 2018
    Publication date: November 22, 2018
    Inventors: Benny Pekka Herzogenrath, Denis Gugel, Rolf Scheben, Rudy Eid
  • Publication number: 20180321039
    Abstract: A micromechanical yaw rate sensor includes a substrate and a rotationally oscillating mass having a rotationally oscillating mass bearing. The rotationally oscillating mass bearing includes a rocker bar, a rocker spring rod which resiliently connects the rocker bar to the substrate, and two support spring rods which resiliently connect, on opposite sides of the rocker spring rod, the rocker bar to the rotationally oscillating mass.
    Type: Application
    Filed: November 10, 2016
    Publication date: November 8, 2018
    Inventors: Reinhard Neul, Torsten Ohms, Robert Maul, Mirko Hattass, Christian Hoeppner, Odd-Axel Pruetz, Benjamin Schmidt, Rolf Scheben, Friedjof Heuck