Patents by Inventor Ronald Stevens

Ronald Stevens has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170097382
    Abstract: Aspects and embodiments are generally directed to electric field detector systems and methods. In one example, an electric field detector system includes a proof-mass including a source of concentrated charge, a plurality of supports, each individual support of the plurality supports being coupled to the proof-mass, a plurality of sensors, each individual sensor of the plurality of sensors positioned to measure a resonant frequency of a corresponding support of the plurality of supports, and a controller coupled to each individual sensor of the plurality of sensors, the controller configured to measure a characteristic of an electric field imparted on the proof-mass based on at least a first resonant frequency of the measured resonant frequencies.
    Type: Application
    Filed: October 5, 2016
    Publication date: April 6, 2017
    Inventors: James A. Bickford, Marc S. Weinberg, John Shattler Fullford, Ronald Steven McNabb, JR.
  • Patent number: 9603240
    Abstract: A method of making a folded micro-wire substrate structure includes providing a flexible substrate and first, second, and third portions. One or more electrical conductors are formed on or in the flexible substrate. The flexible substrate is folded with a first fold between the first and second portions so that the first portion is located adjacent to the second portion in a perpendicular direction. The flexible substrate is folded with at least a second fold between the second and third portions so that the second side is between the second portion and the third portion in the perpendicular direction. The folded flexible substrate is secured to form the folded micro-wire substrate structure.
    Type: Grant
    Filed: May 29, 2014
    Date of Patent: March 21, 2017
    Assignee: EASTMAN KODAK COMPANY
    Inventors: Ronald Steven Cok, Thomas Nathaniel Tombs
  • Publication number: 20170051404
    Abstract: A thin film deposition system for depositing a thin film on a moveable substrate using atmospheric pressure atomic-layer deposition includes a chamber and a moveable substrate having a levitation stabilizing structure located on the moveable substrate that defines an enclosed interior impingement area of the moveable substrate. A stationary support, located in the chamber, supports the moveable substrate. The stationary support extends beyond the enclosed interior impingement area. A pressurized-fluid source provides a fluid flow through the stationary support that impinges on the moveable substrate within the enclosed interior impingement area of the moveable substrate sufficient to levitate the moveable substrate and expose the moveable substrate to the fluid while restricting the lateral motion of the moveable substrate with the levitation stabilizing structure.
    Type: Application
    Filed: September 8, 2016
    Publication date: February 23, 2017
    Inventors: Kurt D. Sieber, Kam Chuen Ng, Ronald Steven Cok
  • Publication number: 20170019652
    Abstract: A source video comprising 2D image frames is acquired, and an image frame including two or more motion vectors describing motion in the image frame is obtained, wherein each of the motion vectors is associated with a region of the image frame. A parameter is calculated for the following: (a) a lateral speed of the image frame, using the motion vectors, and (b) a direction of motion of the image frame, using the more motion vectors. A deformation value is generated using an algorithm that uses both of the parameters, and is applied to the image frame to identify a modified image frame. The modified image frame is blended with a bridge frame that is a non-solid color and different from the modified image frame, to generate a blended frame. The direction of motion and velocity of motion parameters are calculated from the motion vectors.
    Type: Application
    Filed: July 15, 2016
    Publication date: January 19, 2017
    Inventors: Kenneth Martin JACOBS, Ronald Steven KARPF
  • Patent number: 9545101
    Abstract: A method of using a multi-layer biocidal structure includes providing a multi-layer biocidal structure that includes a support and a structured bi-layer on or over the support. The structured bi-layer includes a first cured layer including dispersed multiple biocidal particles on or over the support and a second cured layer on or over the first cured layer on a side of the first cured layer opposite the support. The multiple biocidal particles are dispersed within only the first curable layer. The structured bi-layer has at least one depth greater than the thickness of the second layer. The multi-layer biocidal structure is located on a surface.
    Type: Grant
    Filed: January 28, 2015
    Date of Patent: January 17, 2017
    Assignee: EASTMAN KODAK COMPANY
    Inventors: Ronald Steven Cok, Mitchell Stewart Burberry
  • Patent number: 9545000
    Abstract: A filled large-format imprinted structure includes a substrate, a first cured layer located over the substrate, a first micro-cavity imprinted in the first cured layer, and a first cured material of a first color located in the first micro-cavities. A second cured layer is located over the first cured layer and a second micro-cavity is imprinted in the second cured layer. A second cured material of a second color is located in the second micro-cavities. A third cured layer is located over the second cured layer and a third micro-cavity is imprinted in the third cured layer. A third cured material of a third color is located in the third micro-cavities, thereby defining a large-format imprinted structure.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: January 10, 2017
    Assignee: EASTMAN KODAK COMPANY
    Inventor: Ronald Steven Cok
  • Patent number: 9528184
    Abstract: A method for depositing a thin film on a substrate using atmospheric pressure atomic-layer deposition includes providing a chamber having an atmosphere and a stationary support located in the chamber. The moveable substrate is located in a spatial relationship with the stationary support. A pressurized compound fluid flow, including an inert fluid surrounding a reactive fluid, is provided simultaneously through the stationary support that impinges on at least a portion of the moveable substrate to fluidically levitate the moveable substrate and expose the moveable substrate to the compound fluid flow to deposit a thin film on the moveable substrate.
    Type: Grant
    Filed: February 13, 2015
    Date of Patent: December 27, 2016
    Assignee: EASTMAN KODAK COMPANY
    Inventors: Kurt D. Sieber, Kam Chuen Ng, Ronald Steven Cok
  • Patent number: 9519080
    Abstract: A high-aspect-ratio imprinted structure includes a first layer of cured layer material having a plurality of micro-channels imprinted in the first layer. Each micro-channel has micro-channel walls and a micro-channel bottom, the micro-channel bottom having distinct first and second portions. Deposited material is located on the micro-channel walls and not on the second portion of the micro-channel bottom.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: December 13, 2016
    Assignee: EASTMAN KODAK COMPANY
    Inventor: Ronald Steven Cok
  • Patent number: 9513759
    Abstract: A multi-layer micro-wire structure includes first and second substrates having first and second layers extending to first and second layer edges, respectively. The first layer includes first micro-wire electrodes and first connection pads. Each first micro-wire electrode includes one or more electrically connected first micro-wires and each first connection pad electrically connects to a corresponding first micro-wire electrode. The second layer includes second micro-wire electrodes and second connection pads. Each second micro-wire electrode includes one or more electrically connected second micro-wires, and each second connection pad electrically connects to a corresponding second micro-wire electrode. The second layer is located between the first substrate and the second substrate and the second layer edge extends at least partly beyond the first layer edge so that one or more of the second connection pads is located between at least a portion of the first layer edge and the second layer edge.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: December 6, 2016
    Assignee: EASTMAN KODAK COMPANY
    Inventor: Ronald Steven Cok
  • Patent number: 9516744
    Abstract: A method of making a micro-wire circuit structure adapted for wrapping includes providing a display and a flexible substrate. The flexible substrate includes a plurality of electrically conductive micro-wires on, in, or adjacent to a common side of the flexible substrate and forming micro-wire electrodes in a touch portion of the flexible substrate. One or more electrical circuits is located on or in a circuit portion of the flexible substrate and one or more micro-wires electrically connects the one or more electrical circuits to corresponding micro-wire electrodes. The flexible substrate is located in relation to the display with the touch portion located adjacent to a display viewing side, the circuit portion located adjacent to a display back side, and an edge portion of the flexible substrate wrapping around a display edge from the display viewing side to the display back side.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: December 6, 2016
    Assignee: EASTMAN KODAK COMPANY
    Inventors: Thomas Nathaniel Tombs, Ronald Steven Cok, Christopher R. Morton
  • Patent number: 9510591
    Abstract: A multi-layer biocidal structure includes a support. A structured bi-layer is located on or over the support. The bi-layer includes a first cured layer on or over the support and a second layer on or over the first cured layer on a side of the first cured layer opposite the support. The structured bi-layer has at least one depth greater than the thickness of the second layer. Multiple biocidal particles are located only in the first cured layer.
    Type: Grant
    Filed: January 28, 2015
    Date of Patent: December 6, 2016
    Assignee: EASTMAN KODAK COMPANY
    Inventors: Mitchell Stewart Burberry, Ronald Steven Cok
  • Patent number: 9506147
    Abstract: An apparatus for depositing a thin film on a substrate using atmospheric pressure atomic-layer deposition includes a chamber having an atmosphere and a moveable substrate. A stationary support is located in the chamber that supports the moveable substrate. A pressurized-fluid source provides a compound fluid flow including an inert fluid surrounding a reactive fluid that flows simultaneously through the stationary support and impinges on at least a portion of the moveable substrate to fluidically levitate the moveable substrate and expose the moveable substrate to the compound fluid flow to deposit a thin film on the moveable substrate.
    Type: Grant
    Filed: February 13, 2015
    Date of Patent: November 29, 2016
    Assignee: EASTMAN KODAK COMPANY
    Inventors: Kurt D. Sieber, Kam Chuen Ng, Ronald Steven Cok
  • Patent number: 9506891
    Abstract: A method of making an imprinted electronic sensor structure on a substrate for sensing an environmental factor includes coating, imprinting, and curing a curable layer on the substrate to form a plurality of spatially separated micro-channels extending from the layer surface into the cured layer. First and second layers are located in each micro-channel to form a multi-layer micro-wire. Either the first layer is a cured electrical conductor forming a conductive layer located only within the micro-channel and the second layer is a reactive layer or the first layer is a reactive layer and the second layer is a cured electrical conductor forming a conductive layer located only within the micro-channel. The reactive layer is exposed to the environmental factor and at least a portion of the reactive layer responds to the environmental factor.
    Type: Grant
    Filed: August 15, 2014
    Date of Patent: November 29, 2016
    Assignee: EASTMAN KODAK COMPANY
    Inventors: John Andrew Lebens, Ronald Steven Cok, Yongcai Wang
  • Patent number: 9499908
    Abstract: A thin film deposition system for depositing a thin film on a moveable substrate using atmospheric pressure atomic-layer deposition includes a chamber and a moveable substrate having a levitation stabilizing structure located on the moveable substrate that defines an enclosed interior impingement area of the moveable substrate. A stationary support, located in the chamber, supports the moveable substrate. The stationary support extends beyond the enclosed interior impingement area. A pressurized-fluid source provides a fluid flow through the stationary support that impinges on the moveable substrate within the enclosed interior impingement area of the moveable substrate sufficient to levitate the moveable substrate and expose the moveable substrate to the fluid while restricting the lateral motion of the moveable substrate with the levitation stabilizing structure.
    Type: Grant
    Filed: February 13, 2015
    Date of Patent: November 22, 2016
    Assignee: EASTMAN KODAK COMPANY
    Inventors: Kurt D. Sieber, Kam Chuen Ng, Ronald Steven Cok
  • Patent number: 9499906
    Abstract: A method for depositing a thin film on a moveable substrate using atmospheric pressure atomic-layer deposition provides a chamber including a stationary support, through which fluid flows, that supports a moveable substrate. A moveable substrate includes a levitation stabilizing structure on the substrate that defines an enclosed interior impingement area of the substrate. The moveable substrate is positioned proximate to the stationary support so that the stationary support extends beyond the enclosed interior impingement area and the fluid flow is directed within the enclosed interior impingement area of the moveable substrate.
    Type: Grant
    Filed: February 13, 2015
    Date of Patent: November 22, 2016
    Assignee: EASTMAN KODAK COMPANY
    Inventors: Kurt D. Sieber, Kam Chuen Ng, Ronald Steven Cok
  • Publication number: 20160337638
    Abstract: An electrically controlled spectacle includes a spectacle frame and optoelectronic lenses housed in the frame. The lenses include a left lens and a right lens, each of the optoelectrical lenses having a plurality of states, wherein the state of the left lens is independent of the state of the right lens. The electrically controlled spectacle also includes a control unit housed in the frame, the control unit being adapted to control the state of each of the lenses independently.
    Type: Application
    Filed: July 22, 2016
    Publication date: November 17, 2016
    Inventors: Kenneth Martin JACOBS, Ronald Steven KARPF
  • Publication number: 20160329191
    Abstract: An atmospheric-pressure plasma treatment system includes a plasma source including at least one electrode, a gas in a gas chamber, and an AC power supply that supplies power to the at least one electrode to form a plasma in the gas. A radial-flow surface has a jet nozzle through which the gas flows and the radial-flow surface has a surface profile that conforms to a nonplanar treatment surface of an object. The radial-flow surface is separated from the nonplanar treatment surface by a gap that is less than 2 times a diameter of the jet nozzle so that the gas flows radially outward from the nozzle and between the radial-flow surface and the nonplanar treatment surface.
    Type: Application
    Filed: May 5, 2015
    Publication date: November 10, 2016
    Inventors: Kurt D. Sieber, Ronald Steven Cok, Gary Alan Kneezel
  • Publication number: 20160329192
    Abstract: An atmospheric-pressure plasma treatment system includes a plasma source including at least one electrode, a gas in a gas chamber, and an AC power supply that supplies power to the at least one electrode to form a plasma in the gas. A radial-flow surface has a jet nozzle through which the gas flows, the jet nozzle having a diameter and the radial-flow surface having an effective minimum radius that is at least two times greater than the nozzle diameter, and the radial-flow surface separated from a treatment surface of an object by a gap that is less than or equal to two times the nozzle diameter so that the gas flows radially outward from the jet nozzle and between the radial-flow surface and the treatment surface.
    Type: Application
    Filed: May 5, 2015
    Publication date: November 10, 2016
    Inventors: Kurt D. Sieber, Ronald Steven Cok
  • Publication number: 20160329193
    Abstract: An atmospheric-pressure plasma treatment system includes a plasma source including an AC power supply, at least one electrode, and a gas in a gas chamber. A radial-flow surface has a jet nozzle through which the gas flows. A pre-cursor distributor feeds one or more precursor chemicals into the gas flow.
    Type: Application
    Filed: May 5, 2015
    Publication date: November 10, 2016
    Inventors: Kurt D. Sieber, Ronald Steven Cok
  • Patent number: 9480249
    Abstract: A multi-layer biocidal structure includes a support and a structured bi-layer on or over the support. The structured bi-layer includes a first cured layer on or over the support and a second layer in a spatial relationship to the first cured layer on a side of the first cured layer opposite the support. The structured bi-layer has at least one depth greater than the thickness of the second layer. Multiple biocidal particles are located only in the second layer.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: November 1, 2016
    Assignee: EASTMAN KODAK COMPANY
    Inventors: Ronald Steven Cok, Mitchell Stewart Burberry