Patents by Inventor Roy R. Yu

Roy R. Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10954544
    Abstract: Embodiments of the present invention are directed to a semiconductor device. A non-limiting example of the semiconductor device includes a semiconductor substrate. The semiconductor device also includes a plurality of metal nanopillars formed on the substrate. The semiconductor device also includes an amperometric sensor associated with one of the plurality of nanopillars, wherein the amperometric sensor is selective to an enzyme-active neurotransmitter. The semiconductor device also includes a resistivity sensor associated with a pair of nanopillars, wherein the resistivity sensor is selective to an analyte.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: March 23, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, Bruce B. Doris, Steven J. Holmes, Qinghuang Lin, Roy R. Yu
  • Patent number: 10926079
    Abstract: A nanodevice includes an array of metal nanorods formed on a substrate. An electropolymerized electrical conductor is formed over tops of a portion of the nanorods to form a reservoir between the electropolymerized conductor and the substrate. The electropolymerized conductor includes pores that open or close responsively to electrical signals applied to the nanorods. A cell loading region is disposed in proximity of the reservoir, and the cell loading region is configured to receive stem cells. A neurotrophic dispensing material is loaded in the reservoir to be dispersed in accordance with open pores to affect growth of the stem cells when in vivo.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: February 23, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Steven J. Holmes, Qinghuang Lin, Emily R. Kinser, Nathan P. Marchack, Roy R. Yu
  • Patent number: 10918852
    Abstract: A nanodevice includes an array of metal nanorods formed on a substrate. An electropolymerized electrical conductor is formed over tops of a portion of the nanorods to form a reservoir between the electropolymerized conductor and the substrate. The electropolymerized conductor includes pores that open or close responsively to electrical signals applied to the nanorods. A cell loading region is disposed in proximity of the reservoir, and the cell loading region is configured to receive stem cells. A neurotrophic dispensing material is loaded in the reservoir to be dispersed in accordance with open pores to affect growth of the stem cells when in vivo.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: February 16, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Steven J. Holmes, Qinghuang Lin, Emily R. Kinser, Nathan P. Marchack, Roy R. Yu
  • Patent number: 10814046
    Abstract: Aspects include methods of fabricating antibacterial surfaces for medical implant devices including patterning a photoresist layer on a silicon substrate and etching the silicon to generate a plurality of nanopillars. Aspects also include removing the photoresist layer from the structure and coating the plurality of nanopillars with a biocompatible film. Aspects also include a system for preventing bacterial infection associated with medical implants including a thin silicon film including a plurality of nanopillars.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: October 27, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stacey M. Gifford, Huan Hu, Emily R. Kinser, Roy R. Yu, Sufi Zafar
  • Patent number: 10767084
    Abstract: The present invention related to CNT filled polymer composite system possessing a high thermal conductivity and high temperature stability so that it is a highly thermally conductive for use in 3D and 4D integration for joining device sub-laminate layers. The CNT/polymer composite also has a CTE close to that of Si, enabling a reduced wafer structural warping during high temperature processing cycling. The composition is tailored to be suitable for coating, curing and patterning by means conventionally known in the art.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: September 8, 2020
    Assignee: International Business Machines Corporation
    Inventors: James L. Hedrick, Robert Dennis Miller, Deborah Ann Neumayer, Sampath Purushothaman, Mary E. Rothwell, Willi Volksen, Roy R. Yu
  • Patent number: 10752932
    Abstract: Embodiments of the present invention are directed to a semiconductor device. A non-limiting example of the semiconductor device includes a semiconductor substrate. The semiconductor device also includes a plurality of metal nanopillars formed on the substrate. The semiconductor device also includes an amperometric sensor associated with one of the plurality of nanopillars, wherein the amperometric sensor is selective to an enzyme-active neurotransmitter. The semiconductor device also includes a resistivity sensor associated with a pair of nanopillars, wherein the resistivity sensor is selective to an analyte.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: August 25, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, Bruce B. Doris, Steven J. Holmes, Qinghuang Lin, Roy R. Yu
  • Patent number: 10736997
    Abstract: Aspects include methods of fabricating antibacterial surfaces for medical implant devices including patterning a photoresist layer on a silicon substrate and etching the silicon to generate a plurality of nanopillars. Aspects also include removing the photoresist layer from the structure and coating the plurality of nanopillars with a biocompatible film. Aspects also include a system for preventing bacterial infection associated with medical implants including a thin silicon film including a plurality of nanopillars.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: August 11, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stacey M. Gifford, Huan Hu, Emily R. Kinser, Roy R. Yu, Sufi Zafar
  • Patent number: 10694950
    Abstract: Surface enhanced Raman spectroscopy is employed to obtain chemical data with respect to body tissue and cells. The chemical environments of stimulation implants and drug-delivery catheters are spectroscopically monitored in real time using an implantable probe. The probe includes a surface enhancer that facilitates surface enhanced Raman spectroscopy in opposing relation to an array of optical fibers. Light emitted by the optical fibers can be employed for chemical detection and/or tissue stimulation. Wavelength and optical power are selected based on whether the probe is employed for such detection or stimulation.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: June 30, 2020
    Assignee: International Business Machines Corporation
    Inventors: Emily R. Kinser, John U. Knickerbocker, Roy R. Yu
  • Patent number: 10694951
    Abstract: Surface enhanced Raman spectroscopy is employed to obtain chemical data with respect to body tissue and cells. The chemical environments of stimulation implants and drug-delivery catheters are spectroscopically monitored in real time using an implantable probe. The probe includes a surface enhancer that facilitates surface enhanced Raman spectroscopy in opposing relation to an array of optical fibers. Light emitted by the optical fibers can be employed for chemical detection and/or tissue stimulation. Wavelength and optical power are selected based on whether the probe is employed for such detection or stimulation. Fabrication of a probe assembly that enables surface enhanced Raman spectroscopy is further disclosed.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: June 30, 2020
    Assignee: International Business Machines Corporation
    Inventors: Emily R. Kinser, John U. Knickerbocker, Roy R. Yu
  • Patent number: 10684246
    Abstract: Embodiments of the invention are directed to a biosensing integrated circuit (IC). A non-limiting example of the biosensing IC includes a plurality of semiconductor substrate layers. A sensor element is formed over a first one of the plurality of semiconductor substrate layers, wherein the sensor element is configured to, based at least in part on the sensor element interacting with a predetermined material, generate data representing a measurable electrical parameter. An adhesion enhancement region is configured to physically couple the sensor element to the first one of the plurality of semiconductor substrate layers. In some embodiments of the invention, the biosensing IC further includes an electrically conductive interconnect network configured to communicatively couple the data representing the measurable electrical parameter to computer elements.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: June 16, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, Bruce B. Doris, Damon B. Farmer, Steven J. Holmes, Qinghuang Lin, Nathan P. Marchack, Deborah A. Neumayer, Roy R. Yu
  • Publication number: 20200170533
    Abstract: A three-dimensional (3D) comb probe structure includes a carrier, a plurality of combs arranged in the carrier and spaced apart from one another, a plurality of shanks forming the combs, each shank including a base portion and a stem portion extending from the base portion, wherein sets of the shanks are joined together by the base portions thereof to form a respective comb, and a plurality of sensing elements disposed along the stem portion of each of the shanks and electrically connected to electrical contacts disposed at respective ones of the base portions. The sensing elements can include nanopatterned features on surfaces thereof forming a non-random topography.
    Type: Application
    Filed: November 29, 2018
    Publication date: June 4, 2020
    Inventors: ROY R. YU, EMILY R. KINSER, HARIKLIA DELIGIANNI
  • Publication number: 20200170523
    Abstract: A structure for monitoring and stimulation includes an external power supply unit. The structure also includes an internal hub communicatively coupled to the external power supply unit. The structure further includes a plurality of sensor modules communicatively coupled to the internal hub by a plurality of flexible interconnects. The plurality of sensor modules include three-dimensional (3D) comb sensor devices.
    Type: Application
    Filed: November 29, 2018
    Publication date: June 4, 2020
    Inventors: Hariklia Deligianni, Jason Gerrard, Emily R. Kinser, Themis R. Kyriakides, Dennis D. Spencer, Roy R. Yu, Hitten Zaveri
  • Patent number: 10669153
    Abstract: A biosensor includes an array of electrically conductive nanorods formed on a substrate. The nanorods each includes a nanoscale porous coating formed on a surface of the nanorods from silicon dioxide layers. An enzyme coating is bound to the porous coating.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: June 2, 2020
    Assignee: International Business Machines Corporation
    Inventors: Steven J. Holmes, Emily R. Kinser, Qinghuang Lin, Nathan P. Marchack, Roy R. Yu
  • Publication number: 20200165494
    Abstract: The present invention relates to CNT filled polymer composite system possessing a high thermal conductivity and high temperature stability so that it is a highly thermally conductive for use in 3D and 4D integration for joining device sub-laminate layers. The CNT/polymer composite also has a CTE close to that of Si, enabling a reduced wafer structural warping during high temperature processing cycling. The composition is tailored to be suitable for coating, curing and patterning by means conventionally known in the art.
    Type: Application
    Filed: January 23, 2020
    Publication date: May 28, 2020
    Inventors: James L. Hedrick, Robert D. Miller, Deborah A. Neumayer, Sampath Purushothaman, Mary E. Rothwell, Willi Volksen, Roy R. Yu
  • Patent number: 10618806
    Abstract: A biosensor includes an array of electrically conductive nanorods formed on a substrate. The nanorods each includes a nanoscale porous coating formed on a surface of the nanorods from silicon dioxide layers. An enzyme coating is bound to the porous coating.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: April 14, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Steven J. Holmes, Emily R. Kinser, Qinghuang Lin, Nathan P. Marchack, Roy R. Yu
  • Publication number: 20200108244
    Abstract: A nanodevice includes an array of metal nanorods formed on a substrate. An electropolymerized electrical conductor is formed over tops of a portion of the nanorods to form a reservoir between the electropolymerized conductor and the substrate. The electropolymerized conductor includes pores that open or close responsively to electrical signals applied to the nanorods. A cell loading region is disposed in proximity of the reservoir, and the cell loading region is configured to receive stem cells. A neurotrophic dispensing material is loaded in the reservoir to be dispersed in accordance with open pores to affect growth of the stem cells when in vivo.
    Type: Application
    Filed: November 22, 2019
    Publication date: April 9, 2020
    Inventors: Steven J. Holmes, Qinghuang Lin, Emily R. Kinser, Nathan P. Marchack, Roy R. Yu
  • Patent number: 10610621
    Abstract: Aspects include methods of fabricating antibacterial surfaces for medical implant devices including patterning a photoresist layer on a silicon substrate and etching the silicon to generate a plurality of nanopillars. Aspects also include removing the photoresist layer from the structure and coating the plurality of nanopillars with a biocompatible film. Aspects also include a system for preventing bacterial infection associated with medical implants including a thin silicon film including a plurality of nanopillars.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: April 7, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stacey M. Gifford, Huan Hu, Emily R. Kinser, Roy R. Yu, Sufi Zafar
  • Publication number: 20200094300
    Abstract: A biosensor includes an array of metal nanorods formed on a substrate. An electropolymerized conductor is formed over tops of a portion of the nanorods to form a reservoir between the electropolymerized conductor and the substrate. The electropolymerized conductor includes pores that open and close responsively to electrical signals applied to the nanorods. A dispensing material is loaded in the reservoir to be dispersed in accordance with open pores.
    Type: Application
    Filed: November 26, 2019
    Publication date: March 26, 2020
    Inventors: Steven J. Holmes, Emily R. Kinser, Qinghuang Lin, Nathan P. Marchack, Roy R. Yu
  • Publication number: 20200087700
    Abstract: Embodiments of the present invention are directed to a semiconductor device. A non-limiting example of the semiconductor device includes a semiconductor substrate. The semiconductor device also includes a plurality of metal nanopillars formed on the substrate. The semiconductor device also includes an amperometric sensor associated with one of the plurality of nanopillars, wherein the amperometric sensor is selective to an enzyme-active neurotransmitter. The semiconductor device also includes a resistivity sensor associated with a pair of nanopillars, wherein the resistivity sensor is selective to an analyte.
    Type: Application
    Filed: November 22, 2019
    Publication date: March 19, 2020
    Inventors: HARIKLIA DELIGIANNI, BRUCE B. DORIS, STEVEN J. HOLMES, QINGHUANG LIN, ROY R. YU
  • Patent number: 10585060
    Abstract: Embodiments of the invention are directed to a biosensing integrated circuit (IC). A non-limiting example of the biosensing IC includes a plurality of semiconductor substrate layers. A sensor element is formed over a first one of the plurality of semiconductor substrate layers, wherein the sensor element is configured to, based at least in part on the sensor element interacting with a predetermined material, generate data representing a measureable electrical parameter. An adhesion enhancement region is configured to physically couple the sensor element to the first one of the plurality of semiconductor substrate layers. In some embodiments of the invention, the biosensing IC further includes an electrically conductive interconnect network configured to communicatively couple the data representing the measureable electrical parameter to computer elements.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: March 10, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, Bruce B. Doris, Damon B. Farmer, Steven J. Holmes, Qinghuang Lin, Nathan P. Marchack, Deborah A. Neumayer, Roy R. Yu