Patents by Inventor Roy R. Yu

Roy R. Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9259902
    Abstract: A 4D device comprises a 2D multi-core logic and a 3D memory stack connected through the memory stack sidewall using a fine pitch T&J connection. 3D memory in the stack is thinned from the original wafer thickness to no remaining Si. A tongue and groove device at the memory wafer top and bottom surfaces allows an accurate stack alignment. The memory stack also has micro-channels on the backside to allow fluid cooling, and is further diced at the fixed clock-cycle distance, and flipped on its side and re-assembled on to a template into a pseudo-wafer format. The top side wall of the assembly is polished and built with BEOL to fan-out and use the T&J fine pitch connection to join to the 2D logic wafer. The other side of the memory stack is polished, fanned-out, and bumped with C4 solder. The invention also comprises a process for manufacturing the device.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: February 16, 2016
    Assignee: International Business Machines Corporation
    Inventors: Roy R. Yu, Wilfried Haensch
  • Publication number: 20160027760
    Abstract: A 4D device comprises a 2D multi-core logic and a 3D memory stack connected through the memory stack sidewall using a fine pitch T&J connection. The 3D memory in the stack is thinned from the original wafer thickness to no remaining Si. A tongue and groove device at the memory wafer top and bottom surfaces allows an accurate stack alignment. The memory stack also has micro-channels on the backside to allow fluid cooling. The memory stack is further diced at the fixed clock-cycle distance and is flipped on its side and re-assembled on to a template into a pseudo-wafer format. The top side wall of the assembly is polished and built with BEOL to fan-out and use the T&J fine pitch connection to join to the 2D logic wafer. The other side of the memory stack is polished, fanned-out, and bumped with C4 solder. The invention also comprises a process for manufacturing the device.
    Type: Application
    Filed: September 18, 2015
    Publication date: January 28, 2016
    Applicant: Internatonal Business Machines Corporation
    Inventors: Roy R. YU, Wilfried HAENSCH
  • Publication number: 20160005686
    Abstract: A 4D device comprises a 2D multi-core logic and a 3D memory stack connected through the memory stack sidewall using a fine pitch T&J connection. The 3D memory in the stack is thinned from the original wafer thickness to no remaining Si. A tounge and groove device at the memory wafer top and bottom surfaces allows an accurate stack alignment. The memory stack also has micro-channels on the backside to allow fluid cooling. The memory stack is further diced at the fixed clock-cycle distance and is flipped on its side and re-assembled on to a template into a pseudo-wafer format. The top side wall of the assembly is polished and built with BEOL to fan-out and use the T&J fine pitch connection to join to the 2D logic wafer. The other side of the memory stack is polished, fanned-out, and bumped with C4 solder. The invention also comprises a process for manufacturing the device.
    Type: Application
    Filed: September 17, 2015
    Publication date: January 7, 2016
    Applicant: International Business Machines Corporation
    Inventors: Roy R. YU, Wilfried HAENSCH
  • Patent number: 9171742
    Abstract: The present disclosure relates to methods and devices for manufacturing a three-dimensional chip package. A method includes forming a linear groove on an alignment rail, attaching an alignment rod to the linear groove, forming alignment channels on a plurality of integrated circuit chips, and aligning the plurality of integrated circuit chips by stacking the plurality of integrated circuit chips along the alignment rail. Another method includes forming an alignment ridge on an alignment rail, forming alignment channels on a plurality of integrated circuit chips, and aligning the plurality of integrated circuit chips by stacking the plurality of integrated circuit chips along the alignment rail.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: October 27, 2015
    Assignee: GLOBALFOUNDRIES U.S. 2 LLC
    Inventors: Evan G. Colgan, Steven A. Cordes, Daniel C. Edelstein, Vijayeshwar D. Khanna, Kenneth Latzko, Qinghuang Lin, Peter J. Sorce, Sri M. Sri-Jayantha, Robert L. Wisnieff, Roy R. Yu
  • Publication number: 20150270172
    Abstract: A process and resultant article of manufacture made by such process comprises forming through vias needed to connect a bottom device layer in a bottom silicon wafer to the one in the top device layer in a top silicon wafer comprising a silicon-on-insulator (SOI) wafer. Through vias are disposed in such a way that they extend from the middle of the line (MOL) interconnect of the top wafer to the buried oxide (BOX) layer of the SOI wafer with appropriate insulation provided to isolate them from the SOI device layer.
    Type: Application
    Filed: June 8, 2015
    Publication date: September 24, 2015
    Applicant: International Business Machines Corporation
    Inventors: Sampath D. Purushotaman, Roy R. Yu
  • Publication number: 20150270246
    Abstract: A volumetric integrated circuit manufacturing method is provided. The method includes assembling a slab element of elongate chips, exposing a wiring layer between adjacent elongate chips of the slab element, metallizing a surface of the slab element at and around the exposed wiring layer to form a metallized surface electrically coupled to the wiring layer and passivating the metallized surface to hermetically seal the metallized surface.
    Type: Application
    Filed: March 21, 2014
    Publication date: September 24, 2015
    Applicant: International Business Machines Corporation
    Inventors: Daniel C. Edelstein, Michael A. Gaynes, Thomas M. Shaw, Bucknell C. Webb, Roy R. Yu
  • Patent number: 9111925
    Abstract: An enhanced 3D integration structure comprises a logic microprocessor chip bonded to a collection of vertically stacked memory slices and an optional set of outer vertical slices comprising optoelectronic devices. Such a device enables both high memory content in close proximity to the logic circuits and a high bandwidth for logic to memory communication. Additionally, the provision of optoelectronic devices in the outer slices of the vertical slice stack enables high bandwidth direct communication between logic processor chips on adjacent enhanced 3D modules mounted next to each other or on adjacent packaging substrates. A method to fabricate such structures comprises using a template assembly which enables wafer format processing of vertical slice stacks.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: August 18, 2015
    Assignee: International Business Machines Corporation
    Inventors: Evan George Colgan, SAmpath Purushothaman, Roy R. Yu
  • Publication number: 20150054149
    Abstract: A process and resultant article of manufacture made by such process comprises forming through vias needed to connect a bottom device layer in a bottom silicon wafer to the one in the top device layer in a top silicon wafer comprising a silicon-on-insulator (SOI) wafer. Through vias are disposed in such a way that they extend from the middle of the line (MOL) interconnect of the top wafer to the buried oxide (BOX) layer of the SOI wafer with appropriate insulation provided to isolate them from the SOI device layer.
    Type: Application
    Filed: August 21, 2013
    Publication date: February 26, 2015
    Applicant: International Business Machines Corporation
    Inventors: Sampath Purushothaman, Roy R. Yu
  • Patent number: 8962448
    Abstract: A computer readable medium is provided that is encoded with a program comprising instructions for performing a method for fabricating a 3D integrated circuit structure. Provided are an interface wafer including a first wiring layer and through-silicon vias, and a first active circuitry layer wafer including active circuitry. The first active circuitry layer wafer is bonded to the interface wafer. Then, a first portion of the first active circuitry layer wafer is removed such that a second portion remains attached to the interface wafer. A stack structure including the interface wafer and the second portion of the first active circuitry layer wafer is bonded to a base wafer. Next, the interface wafer is thinned so as to form an interface layer, and metallizations coupled through the through-silicon vias in the interface layer to the first wiring layer are formed on the interface layer.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: February 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: Mukta G. Farooq, Robert Hannon, Subramanian S. Iyer, Steven J. Koester, Fei Liu, Sampath Purushothaman, Albert M. Young, Roy R. Yu
  • Publication number: 20150024549
    Abstract: The present disclosure relates to methods and devices for manufacturing a three-dimensional chip package. A method includes forming a linear groove on an alignment rail, attaching an alignment rod to the linear groove, forming alignment channels on a plurality of integrated circuit chips, and aligning the plurality of integrated circuit chips by stacking the plurality of integrated circuit chips along the alignment rail. Another method includes forming an alignment ridge on an alignment rail, forming alignment channels on a plurality of integrated circuit chips, and aligning the plurality of integrated circuit chips by stacking the plurality of integrated circuit chips along the alignment rail.
    Type: Application
    Filed: July 22, 2013
    Publication date: January 22, 2015
    Applicant: International Business Machines Corporation
    Inventors: Evan G. Colgan, Steven A. Cordes, Daniel C. Edelstein, Vijayeshwar D. Khanna, Kenneth Latzko, Qinghuang Lin, Peter J. Sorce, Sri M. Sri-Jayantha, Robert L. Wisnieff, Roy R. Yu
  • Publication number: 20150024548
    Abstract: A computer readable medium is provided that is encoded with a program comprising instructions for performing a method for fabricating a 3D integrated circuit structure. Provided are an interface wafer including a first wiring layer and through-silicon vias, and a first active circuitry layer wafer including active circuitry. The first active circuitry layer wafer is bonded to the interface wafer. Then, a first portion of the first active circuitry layer wafer is removed such that a second portion remains attached to the interface wafer. A stack structure including the interface wafer and the second portion of the first active circuitry layer wafer is bonded to a base wafer. Next, the interface wafer is thinned so as to form an interface layer, and metallizations coupled through the through-silicon vias in the interface layer to the first wiring layer are formed on the interface layer.
    Type: Application
    Filed: August 10, 2012
    Publication date: January 22, 2015
    Applicant: International Business Machines Corporation
    Inventors: Mukta G. Farooq, Robert Hannon, Subramanian S. Iyer, Steven J. Koester, Fei Liu, Sampath Purushothaman, Albert M. Young, Roy R. Yu
  • Patent number: 8738167
    Abstract: A method is provided for fabricating a 3D integrated circuit structure. According to the method, a first active circuitry layer wafer is provided. The first active circuitry layer wafer comprises a P+ portion covered by a P? layer, and the P? layer includes active circuitry. The first active circuitry layer wafer is bonded face down to an interface wafer that includes a first wiring layer, and then the P+ portion of the first active circuitry layer wafer is selectively removed with respect to the P? layer of the first active circuitry layer wafer. Next, a wiring layer is fabricated on the backside of the P? layer. Also provided are a non-transitory computer readable medium encoded with a program for fabricating a 3D integrated circuit structure, and a 3D integrated circuit structure.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: May 27, 2014
    Assignee: International Business Machines Corporation
    Inventors: Mukta G. Farooq, Robert Hannon, Subramanian S. Iyer, Steven J. Koester, Sampath Purushothaman, Roy R. Yu
  • Patent number: 8664081
    Abstract: A computer readable medium is provided that is encoded with a program comprising instructions for performing a method for fabricating a 3D integrated circuit structure. Provided are an interface wafer including a first wiring layer and through-silicon vias, and a first active circuitry layer wafer including active circuitry. The first active circuitry layer wafer is bonded to the interface wafer. Then, a first portion of the first active circuitry layer wafer is removed such that a second portion remains attached to the interface wafer. A stack structure including the interface wafer and the second portion of the first active circuitry layer wafer is bonded to a base wafer. Next, the interface wafer is thinned so as to form an interface layer, and metallizations coupled through the through-silicon vias in the interface layer to the first wiring layer are formed on the interface layer.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: March 4, 2014
    Assignee: International Business Machines Corporation
    Inventors: Mukta G. Farooq, Robert Hannon, Subramanian S. Iyer, Steven J. Koester, Fei Liu, Sampath Purushothaman, Albert M. Young, Roy R. Yu
  • Publication number: 20140021616
    Abstract: A semiconductor structure is provided and includes a substrate having an edge surface and a device surface with a central area, a crack stop structure disposed on the device surface and a circuit structure including components disposed on the device surface in the central area and interconnects electrically coupled to the components. The interconnects are configured to extend from the central area to the edge surface while bridging over the crack stop structure.
    Type: Application
    Filed: July 19, 2012
    Publication date: January 23, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Diego Anzola, Evan G. Colgan, Kevin K. Dezfulian, Daniel C. Edelstein, Mark C. H. Lamorey, Sampath Purushothaman, Thomas M. Shaw, Roy R. Yu
  • Publication number: 20140024146
    Abstract: A semiconductor structure is provided and includes a substrate having an edge surface and a device surface with a central area, a crack stop structure disposed on the device surface and a circuit structure including components disposed on the device surface in the central area and interconnects electrically coupled to the components. The interconnects are configured to extend from the central area to the edge surface while bridging over the crack stop structure.
    Type: Application
    Filed: August 3, 2012
    Publication date: January 23, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Diego Anzola, Evan G. Colgan, Kevin K. Dezfulian, Daniel C. Edelstein, Mark C. H. Lamorey, Sampath Purushothaman, Thomas M. Shaw, Roy R. Yu
  • Patent number: 8629553
    Abstract: A method is provided for fabricating a 3D integrated circuit structure. According to the method, a first active circuitry layer wafer is provided. The first active circuitry layer wafer comprises a P+ portion covered by a P? layer, and the P? layer includes active circuitry. The first active circuitry layer wafer is bonded face down to an interface wafer that includes a first wiring layer, and then the P+ portion of the first active circuitry layer wafer is selectively removed with respect to the P? layer of the first active circuitry layer wafer. Next, a wiring layer is fabricated on the backside of the P? layer. Also provided are a tangible computer readable medium encoded with a program for fabricating a 3D integrated circuit structure, and a 3D integrated circuit structure.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: January 14, 2014
    Assignee: International Business Machines Corporation
    Inventors: Mukta G. Farooq, Robert Hannon, Subramanian S. Iyer, Steven J. Koester, Sampath Purushothaman, Roy R. Yu
  • Publication number: 20130341791
    Abstract: An enhanced 3D integration structure comprises a logic microprocessor chip bonded to a collection of vertically stacked memory slices and an optional set of outer vertical slices comprising optoelectronic devices. Such a device enables both high memory content in close proximity to the logic circuits and a high bandwidth for logic to memory communication. Additionally, the provision of optoelectronic devices in the outer slices of the vertical slice stack enables high bandwidth direct communication between logic processor chips on adjacent enhanced 3D modules mounted next to each other or on adjacent packaging substrates. A method to fabricate such structures comprises using a template assembly which enables wafer format processing of vertical slice stacks.
    Type: Application
    Filed: August 23, 2013
    Publication date: December 26, 2013
    Applicant: International Bushiness Machines Corporation
    Inventors: Evan George Colgan, Sampath Purushothaman, Roy R. Yu
  • Patent number: 8569874
    Abstract: A chip stack structure includes a logic chip having an active device surface, and memory slices of a memory unit vertically aligned such that a surface of the memory slices is oriented perpendicular to the active device surface of the logic chip. The chip stack structure also includes wiring patterned on an upper surface of the memory slices, the wiring electrically connecting memory leads of the memory slices to logic grids corresponding to logic grid connections of the logic chip.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: October 29, 2013
    Assignee: International Business Machines Corporation
    Inventors: Evan G. Colgan, Monty M. Denneau, Sampath Purushothaman, Klmberley A. Kelly, Roy R. Yu
  • Patent number: 8563396
    Abstract: A process and resultant article of manufacture made by such process comprises forming through vias needed to connect a bottom device layer in a bottom silicon wafer to the one in the top device layer in a top silicon wafer comprising a silicon-on-insulator (SOI) wafer. Through vias are disposed in such a way that they extend from the middle of the line (MOL) interconnect of the top wafer to the buried oxide (BOX) layer of the SOI wafer with appropriate insulation provided to isolate them from the SOI device layer.
    Type: Grant
    Filed: January 29, 2011
    Date of Patent: October 22, 2013
    Assignee: International Business Machines Corporation
    Inventors: Sampath Purushothaman, Roy R. Yu
  • Patent number: 8546188
    Abstract: A first set of semiconductor substrates includes semiconductor chips having bonding pads arranged in a primary pattern. A second set of semiconductor substrates includes semiconductor chips having bonding pads arranged in a mirror-image pattern. A first semiconductor substrate from the first set is bonded to a second semiconductor substrate from the second set such that each bonding pads is bonded to a mirror-image bonding pad. Additional substrates are bonded sequentially such that the bonded structure includes an even number of semiconductor substrates of which one half have bonding pads of the primary pattern and are bonded to the side of the first semiconductor substrate, while the other half have bonding pads of the mirror-image pattern and are bonded to the side of the second semiconductor substrate. The mirror-image patterns of the bonding pads enable maximal cancellation of wafer bow.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: October 1, 2013
    Assignee: International Business Machines Corporation
    Inventors: Fei Liu, Albert M. Young, Roy R. Yu