Patents by Inventor Ryo Shimizu

Ryo Shimizu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180201140
    Abstract: A regenerative braking control apparatus equipped on an electrically driven vehicle having road wheels and an electric motor for driving the road wheels for running. An operation unit is provided for the driver of the vehicle to select a magnitude of the braking force to be generated by the electric motor during regenerative braking. A determination unit determines, on the basis of conditions of the electrically driven vehicle, whether or not a selected braking force selected through the operation unit is acceptable. A notifier unit is constructed such that, in a case where the selected braking force is determined to be unacceptable by the determination unit, the notifier unit provides a corresponding notification to the driver.
    Type: Application
    Filed: September 2, 2016
    Publication date: July 19, 2018
    Applicant: MITSUBISHI JIDOSHA KOGYO KABUSHIKI KAISHA
    Inventors: Ryo SHIMIZU, Kazunori HANDA, Norihiko IKOMA, Yoshinori TOMITA
  • Patent number: 10018496
    Abstract: A hopper has a gate pivotable to open and close the lower opening of a hopper body, wherein opposing side parts more spaced apart than a width of the body are extending from the gate, and the opposing side parts of the gate are externally fitted pivotably to fulcrum shafts protruding from outer side surfaces of the hopper body. The hopper further includes regulating members interposed between the outer side surfaces of the body and the opposing side parts of the gate. The regulating members are configured to regulate movements of the gate in pivotal directions thereof and are detachably engaged with the fulcrum shafts circumferentially around the fulcrum shafts.
    Type: Grant
    Filed: July 5, 2016
    Date of Patent: July 10, 2018
    Assignee: Yamato Scale Co., Ltd.
    Inventors: Koji Morimoto, Ryo Shimizu
  • Patent number: 9995620
    Abstract: This disclosure provides a combination scale including a dispersing feeder, linear feeders, a plurality of hoppers, and a collector. The dispersing feeder and linear feeders are respectively disposed in upper parts of a center base of the combination scale to disperse and deliver outwardly articles received therein. The hoppers are removably mountable to an outer periphery of the center base to hold and discharge the articles. The collector collects the articles discharged from the hoppers on a central side of the center base and discharges the collected articles. The collector constitutes a collecting and discharging channel for the articles to be collected and discharged. The combination scale further includes a shielding tool configured to block liquid that drops from the center base downward into the collecting and discharging channel.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: June 12, 2018
    Assignee: Yamato Scale Co., Ltd.
    Inventors: Koji Morimoto, Ryo Shimizu
  • Patent number: 9991809
    Abstract: The feedback IC is provided at the secondary side of the DC/DC converter and is coupled to the photo coupler. The error amplifier amplifies an error between a voltage detection signal according to an output voltage of the DC/DC converter and a target voltage, and draws a current according to the error from the input side of the feedback photo coupler via the photo coupler connection terminal. The abnormal detection circuit asserts an abnormal detection signal when an abnormal condition in a secondary side of the DC/DC converter is detected. The protection circuit is coupled to the photo coupler connection terminal, and acts on the feedback photo coupler via the photo coupler connection terminal so that a feedback operation by the error amplifier is invalid and an on-period of the switching transistor is shorten.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: June 5, 2018
    Assignee: ROHM CO., LTD
    Inventors: Hiroki Kikuchi, Ryo Shimizu
  • Patent number: 9970809
    Abstract: A digital filter for a digital weigher reduces a calculation time in an adapted filter while maintaining weighing accuracy, a digital weigher includes the filter for the weigher, and a wave filtering process method uses the digital filter for the digital weigher. A fixation section of a FIR filter removes an oscillating component in a predetermined frequency range, from a digital weighing signal. A determination device determines whether an amplitude of an oscillating component contained in a digital weighing signal derived by performing a wave filtering process falls within a predetermined damping range. A control device changes a frequency range of an oscillating component to be removed by an adaptive section of the filter based on a result of the determination. The adaptive section of the filter performs the wave filtering process with respect to the oscillating component in the frequency range changed by the control device.
    Type: Grant
    Filed: September 8, 2010
    Date of Patent: May 15, 2018
    Assignee: YAMATO SCALE CO., LTD.
    Inventors: Sachie Ito, Takayuki Nagai, Ryo Shimizu
  • Patent number: 9948196
    Abstract: The synchronous rectifier controller is provided at the secondary side of the insulation-type synchronous DC/DC converter and controls the synchronous rectifier transistor. The controller is coupled to the output of the feedback photo coupler and drives the switching transistor according to the feedback signal. The synchronous rectifier controller includes a driver circuit and an abnormal detection circuit and is configured as a single module. The driver circuit drives the synchronous rectifier transistor. The abnormal detection circuit detects an abnormal condition in the secondary side of the DC/DC converter. FAIL terminal is coupled to notify outside of an occurrence of the abnormal condition.
    Type: Grant
    Filed: September 2, 2015
    Date of Patent: April 17, 2018
    Assignee: ROHM CO., LTD.
    Inventors: Hiroki Kikuchi, Ryo Shimizu
  • Publication number: 20180095302
    Abstract: Provided is an optical modulator module in which a modulation substrate having a plurality of optical modulation units is stored inside a package case. The optical modulator module includes a plurality of signal supply lines configured to supply a modulation signal to the optical modulation unit through a connector terminal which is introduced into the package case. At least two or more of the plurality of signal supply lines are set such that the signal supply lines have overall electrical lengths which are different from each other.
    Type: Application
    Filed: September 29, 2017
    Publication date: April 5, 2018
    Applicant: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Kei KATO, Norikazu MIYAZAKI, Ryo SHIMIZU
  • Patent number: 9927283
    Abstract: A digital filter for a digital weigher reduces a calculation time in an adapted filter while maintaining weighing accuracy, a digital weigher includes the filter for the weigher, and a wave filtering process method uses the digital filter for the digital weigher. A fixation section of a FIR filter removes an oscillating component in a predetermined frequency range, from a digital weighing signal. A determination device determines whether an amplitude of an oscillating component contained in a digital weighing signal derived by performing a wave filtering process falls within a predetermined damping range. A control device changes a frequency range of an oscillating component to be removed by an adaptive section of the filter based on a result of the determination. The adaptive section of the filter performs the wave filtering process with respect to the oscillating component in the frequency range changed by the control device.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: March 27, 2018
    Assignee: YAMATO SCALE CO., LTD.
    Inventors: Sachie Ito, Takayuki Nagai, Ryo Shimizu
  • Patent number: 9897826
    Abstract: In an optical modulator, a light-receiving element, and an output port are disposed in a substrate. In addition, at least a part of an electrical line, which electrically connects the light-receiving element and the output port to each other, is formed in the substrate. In addition, a plurality of the optical modulation sections are provided. In addition, among a plurality of the light-receiving elements which are provided to the optical modulation sections, at least one light-receiving element is disposed at a position different from positions of the other light-receiving elements in a light wave propagating direction. A plurality of the output ports are disposed in an arrangement in the light wave propagating direction in correspondence with an arrangement of the plurality of the light-receiving elements in the light wave propagating direction.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: February 20, 2018
    Assignee: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Kei Katou, Norikazu Miyazaki, Ryo Shimizu
  • Patent number: 9897825
    Abstract: An optical modulator includes a substrate having an electro-optic effect, an optical waveguide that is formed in the substrate, and a modulation electrode (not illustrated) for modulating a light wave that propagates through the optical waveguide. In the optical modulator, a light-receiving element is disposed on the substrate, and the light-receiving element includes a light-receiving section that receives a light wave that propagates through the optical waveguide, and the light-receiving section is located on the downstream side of a center of the light-receiving element in a light wave propagating direction.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: February 20, 2018
    Assignee: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Kei Katou, Norikazu Miyazaki, Ryo Shimizu
  • Patent number: 9885889
    Abstract: An optical modulator includes a first optical modulation section and a second optical modulation section which use modulation signals different from each other when applying a modulation signal to the modulation electrode and performing optical modulation. In addition, a light-receiving element is disposed on a substrate, and the light-receiving element has a first light-receiving section that detects optical signal propagating from a first waveguide which guides the optical signal output from the first optical modulation section. In addition, the light-receiving element also has a second light-receiving section that detects an optical signal propagating through a second waveguide which guides the optical signal output from the second optical modulation section.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: February 6, 2018
    Assignee: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Kei Katou, Norikazu Miyazaki, Ryo Shimizu
  • Publication number: 20180033664
    Abstract: The invention is an atmosphere formation apparatus that is provided in a floatation conveyance apparatus, the floatation conveyance apparatus conveying a workpiece while performing floating support of the workpiece by gas injection, the atmosphere formation apparatus including a small-range atmosphere formation device that forms a small-range atmosphere B in a large-range atmosphere A, the large-range atmosphere A being an atmosphere in a large-range region containing a conveyance path along which the conveyance is performed, the small-range atmosphere B being an atmosphere in a small-range region containing the conveyance path, the small-range atmosphere B being different from the large-range atmosphere A.
    Type: Application
    Filed: January 27, 2016
    Publication date: February 1, 2018
    Applicant: THE JAPAN STEEL WORKS, LTD.
    Inventors: Takahiro FUJI, Ryo SHIMIZU
  • Patent number: 9869888
    Abstract: In an optical modulator, a light-receiving element (3a) that receives a light wave modulated in an optical modulation section (Ma) and a light-receiving element (3b) that receives a light wave modulated in an optical modulation section (Mb) are provided in a substrate. In addition, at least a part of an electrical line (4a) that guides a light-receiving signal output from the light-receiving element (3a) to an outer side of the substrate, and at least apart of an electrical line (4b) that guides a light-receiving signal form the light-receiving element (3b) to an outer side of the substrate are formed in the substrate. In addition, crosstalk suppression means (5), which suppress crosstalk between the electrical line (4a) and the electrical line (4b), is provided between the part of the electrical line (4a) and the part of the electrical line (4b) which are formed in the substrate.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: January 16, 2018
    Assignee: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Kei Katou, Norikazu Miyazaki, Ryo Shimizu
  • Patent number: 9862370
    Abstract: A control device for controlling an electric vehicle includes a driving source that rotates wheels, a braking device that applies braking force to the wheels, a creep torque control portion that controls magnitude of creep torque to be applied to the wheels, wherein the creep torque control portion includes a braking force detecting unit that detects the braking force applied by the braking device, a fundamental creep torque calculating unit that calculates fundamental creep torque corresponding to vehicle speed, a creep suppression torque calculating unit that calculates creep suppression torque smaller than the fundamental creep torque based on a result of the detection of the braking force detecting unit and a creep torque calculating unit that calculate the creep torque by subtracting the creep suppression torque from the fundamental creep torque.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: January 9, 2018
    Assignee: MITSUBISHI JIDOSHA KOGYO KABUSHIKI KAISHA
    Inventors: Yusuke Sasaki, Norihiko Ikoma, Makoto Kamachi, Yoshinori Tomita, Ryo Shimizu
  • Publication number: 20170282898
    Abstract: In a hybrid vehicle including: a step-up converter for stepping-up the voltage from a battery and supplying power to the front motor for driving front wheels; as well as a paddle switch for setting regenerative braking torque stepwisely, and a hybrid control unit for calculating a regenerative braking force based on a selection stage set by the paddle switch, the hybrid control unit decreases the regenerative braking force to be less than the regenerative braking force while the maximum input/output power of the step-up converter is not limited, when a selection stage in which regenerative braking force is more than that in a D range is selected while the maximum input/output power of the step-up converter is limited.
    Type: Application
    Filed: March 21, 2017
    Publication date: October 5, 2017
    Applicant: MITSUBISHI JIDOSHA KOGYO KABUSHIKI KAISHA
    Inventors: Ryo SHIMIZU, Norihiko IKOMA, Makoto KAMACHI, Hironori ABE, Naoki MIYAMOTO
  • Publication number: 20170282897
    Abstract: In a hybrid vehicle including a front motor for driving front wheels, and a step-up converter for stepping up voltage from a battery to supply power to the front motor, in which power regenerated by rotational force of the front wheel during vehicle deceleration is stepped down by a step-up converter and can be supplied to a battery, the hybrid vehicle includes a hybrid control unit which computes maximum input power of the step-up converter and regenerated power of the front motor during vehicle deceleration, and sets a difference obtained by subtracting regenerated power of the front motor from the maximum input power of the step-up converter to the maximum generated power of the generator.
    Type: Application
    Filed: March 20, 2017
    Publication date: October 5, 2017
    Applicant: MITSUBISHI JIDOSHA KOGYO KABUSHIKI KAISHA
    Inventors: Ryo SHIMIZU, Norihiko IKOMA, Makoto KAMACHI, Hironori ABE, Naoki MIYAMOTO
  • Publication number: 20170282905
    Abstract: A controller of a hybrid vehicle includes: a control unit configured to activate a starter device for starting any one of a drive motor and an engine by stepping up electric power from a battery by a voltage transformer. The control unit includes a limitation part that limits passing power of the voltage transformer when the temperature of the voltage transformer rises, and a calculation part that obtains a maximum electric power that can be supplied to the drive motor when the starter device is activated, by subtracting a consumed power of the starter device from limited power during limitation of passing power by the limitation part. The control unit activates the starter device and starts the engine, when required power of the drive motor reaches the maximum electric power calculated by the calculation part during limitation of passing power by the limitation part.
    Type: Application
    Filed: March 17, 2017
    Publication date: October 5, 2017
    Applicant: MITSUBISHI JIDOSHA KOGYO KABUSHIKI KAISHA
    Inventors: Naoki MIYAMOTO, Norihiko IKOMA, Makoto KAMACHI, Ryo SHIMIZU, Hironori ABE
  • Publication number: 20170282750
    Abstract: In a hybrid vehicle including a front motor for driving front wheels, a rear motor for driving rear wheels, a generator for generating power by being driven by an internal combustion engine, and a step-up converter for stepping up the voltage from a battery and supplying power to the front motor, while stepping-down the generated power of the generator and supplying the power to the rear motor, a hybrid control unit decreases the power supplied from the generator to the rear motor, and increases the power supplied from the battery to the rear motor when input power of the step-up converter is limited based on a temperature condition of the step-up converter.
    Type: Application
    Filed: March 29, 2017
    Publication date: October 5, 2017
    Applicant: MITSUBISHI JIDOSHA KOGYO KABUSHIKI KAISHA
    Inventors: Ryo SHIMIZU, Norihiko IKOMA, Makoto KAMACHI, Hironori ABE, Naoki MIYAMOTO
  • Publication number: 20170282894
    Abstract: A power controller of a hybrid vehicle includes: a first drive motor that drives any one of a front wheel and a rear wheel of a vehicle; an engine that drives the one wheel or the corresponding other one of the front wheel and the rear wheel of the vehicle through a clutch; a generator that is driven by the engine; and a voltage transformer that steps down generated electric power supplied to the first drive motor and a battery from the generator. The power controller limits passing power of the voltage transformer according to the temperature of the voltage transformer, and connects the clutch when the passing power of the voltage transformer is limited.
    Type: Application
    Filed: March 16, 2017
    Publication date: October 5, 2017
    Applicant: MITSUBISHI JIDOSHA KOGYO KABUSHIKI KAISHA
    Inventors: Makoto KAMACHI, Ryo SHIMIZU, Norihiko IKOMA, Hironori ABE, Naoki MIYAMOTO
  • Publication number: 20170282891
    Abstract: A hybrid vehicle including a front motor for driving front wheels, a rear motor for driving rear wheels, and a step-up converter for stepping-up the voltage from a battery and supplying power to the front motor, in which an engine is started to shift the vehicle from an EV mode into a series mode when the output power of the step-up converter is lower than the required power of the front motor, the hybrid vehicle includes a hybrid control unit which computes maximum output power of the step-up converter and, when the output power of the step-up converter is more than the maximum output power, increases the distribution ratio of the travel driving torque of the rear wheel, thereby increasing the output torque of the rear motor.
    Type: Application
    Filed: March 13, 2017
    Publication date: October 5, 2017
    Applicant: MITSUBISHI JIDOSHA KOGYO KABUSHIKI KAISHA
    Inventors: RYO SHIMIZU, Norihiko IKOMA, Makoto KAMACHI, Hironori ABE, Naoki MIYAMOTO