Patents by Inventor Ryo Tokumaru

Ryo Tokumaru has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10553704
    Abstract: To provide a semiconductor device including an oxide semiconductor layer with high and stable electrical characteristics, the semiconductor device is manufactured by forming a first insulating layer, forming oxide over the first insulating layer and then removing the oxide n times (n is a natural number), forming an oxide semiconductor layer over the first insulating layer, forming a second insulating layer over the oxide semiconductor layer, and forming a conductive layer over the second insulating layer. Alternatively, the semiconductor device is manufactured by forming the oxide semiconductor layer over the first insulating layer, forming the second insulating layer over the oxide semiconductor layer, forming the oxide over the second insulating layer and then removing the oxide n times (n is a natural number), and forming the conductive layer over the second insulating layer.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: February 4, 2020
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tetsuhiro Tanaka, Ryo Tokumaru, Yasumasa Yamane, Akihisa Shimomura, Naoki Okuno
  • Patent number: 10290745
    Abstract: A transistor with stable electrical characteristics is provided. The transistor includes a first insulator over a substrate; first to third oxide insulators over the first insulator; a second insulator over the third oxide insulator; a first conductor over the second insulator; and a third insulator over the first conductor. An energy level of a conduction band minimum of each of the first and second oxide insulators is closer to a vacuum level than that of the oxide semiconductor is. An energy level of a conduction band minimum of the third oxide insulator is closer to the vacuum level than that of the second oxide insulator is. The first insulator contains oxygen. The number of oxygen molecules released from the first insulator measured by thermal desorption spectroscopy is greater than or equal to 1E14 molecules/cm2 and less than or equal to 1E16 molecules/cm2.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: May 14, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Tetsuhiro Tanaka, Akihisa Shimomura, Yasumasa Yamane, Ryo Tokumaru, Yuhei Sato, Kazuhiro Tsutsui
  • Publication number: 20190139783
    Abstract: A semiconductor device having high reliability is provided.
    Type: Application
    Filed: April 11, 2017
    Publication date: May 9, 2019
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Kazutaka KURIKI, Yuji EGI, Noritaka ISHIHARA, Yusuke NONAKA, Yasumasa YAMANE, Ryo TOKUMARU, Daisuke MATSUBAYASHI
  • Patent number: 10236357
    Abstract: A semiconductor device having stable electrical characteristics is provided. A semiconductor device that can be miniaturized or highly integrated is provided. One embodiment of the present invention includes a transistor including an oxide, a first barrier layer over the transistor, and a second barrier layer in contact with the first barrier layer. The oxide is in contact with an insulator including an excess-oxygen region. The insulator is in contact with the first barrier layer. The first barrier layer has a thickness greater than or equal to 0.5 nm and less than or equal to 1.5 nm. The second barrier layer is thicker than the first barrier layer.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: March 19, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yasumasa Yamane, Ryo Tokumaru, Hiromi Sawai
  • Publication number: 20180342601
    Abstract: To provide a semiconductor device including an oxide semiconductor layer with high and stable electrical characteristics, the semiconductor device is manufactured by forming a first insulating layer, forming oxide over the first insulating layer and then removing the oxide n times (n is a natural number), forming an oxide semiconductor layer over the first insulating layer, forming a second insulating layer over the oxide semiconductor layer, and forming a conductive layer over the second insulating layer. Alternatively, the semiconductor device is manufactured by forming the oxide semiconductor layer over the first insulating layer, forming the second insulating layer over the oxide semiconductor layer, forming the oxide over the second insulating layer and then removing the oxide n times (n is a natural number), and forming the conductive layer over the second insulating layer.
    Type: Application
    Filed: July 18, 2018
    Publication date: November 29, 2018
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tetsuhiro Tanaka, Ryo Tokumaru, Yasumasa Yamane, Akihisa Shimomura, Naoki Okuno
  • Patent number: 10141344
    Abstract: A semiconductor device having favorable electric characteristics is provided. The semiconductor device includes a first transistor and second transistor. The first transistor includes a first conductor over a substrate; a first insulator thereover; a first oxide thereover; a second insulator over thereover; a second conductor including a side surface substantially aligned with a side surface of the second insulator and being over the second insulator; a third insulator including a side surface substantially aligned with a side surface of the second conductor and being over the second conductor; a fourth insulator in contact with a side surface of the second insulator, a side surface of the second conductor, and a side surface of the third insulator; and a fifth insulator in contact with the first oxide and the fourth insulator.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: November 27, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Kiyoshi Kato, Yuta Endo, Ryo Tokumaru
  • Patent number: 10050132
    Abstract: A change in electrical characteristics is suppressed and reliability in a semiconductor device using a transistor including an oxide semiconductor is improved. One feature resides in forming an oxide semiconductor film over an oxygen-introduced insulating film, and then forming the source and drain electrodes with an antioxidant film thereunder. Here, in the antioxidant film, the width of a region overlapping with the source and drain electrodes is longer than the width of a region not overlapping with them. The transistor formed as such has less defects in the channel region, which will improve reliability of the semiconductor device.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: August 14, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Akihisa Shimomura, Yasumasa Yamane, Yuhei Sato, Tetsuhiro Tanaka, Masashi Tsubuku, Toshihiko Takeuchi, Ryo Tokumaru, Mitsuhiro Ichijo, Satoshi Toriumi, Takashi Ohtsuki, Toshiya Endo
  • Patent number: 10032918
    Abstract: A highly reliable semiconductor device is provided. The semiconductor device includes a first barrier insulating film; a first gate electrode thereover; a first gate insulating film thereover; an oxide semiconductor film thereover; source and drain electrodes over the oxide semiconductor film; a second gate insulating film over the oxide semiconductor film; a second gate electrode over the second gate insulating film; a second barrier insulating film that covers the oxide semiconductor film, the source and the drain electrodes, and the second gate electrode, and is in contact with side surfaces of the oxide semiconductor film and the source and drain electrodes; and a third barrier insulating film thereover. The first to third barrier insulating films are less likely to transmit hydrogen, water, and oxygen than the first and second gate insulating films. The third barrier insulating film is thinner than the second barrier insulating film.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: July 24, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Daisuke Matsubayashi, Ryo Tokumaru, Yasumasa Yamane, Kiyofumi Ogino, Taichi Endo, Hajime Kimura
  • Patent number: 10032888
    Abstract: To provide a semiconductor device including an oxide semiconductor layer with high and stable electrical characteristics, the semiconductor device is manufactured by forming a first insulating layer, forming oxide over the first insulating layer and then removing the oxide n times (n is a natural number), forming an oxide semiconductor layer over the first insulating layer, forming a second insulating layer over the oxide semiconductor layer, and forming a conductive layer over the second insulating layer. Alternatively, the semiconductor device is manufactured by forming the oxide semiconductor layer over the first insulating layer, forming the second insulating layer over the oxide semiconductor layer, forming the oxide over the second insulating layer and then removing the oxide n times (n is a natural number), and forming the conductive layer over the second insulating layer.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: July 24, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tetsuhiro Tanaka, Ryo Tokumaru, Yasumasa Yamane, Akihisa Shimomura, Naoki Okuno
  • Publication number: 20180138212
    Abstract: A semiconductor device having favorable electric characteristics is provided. The semiconductor device includes a first transistor and second transistor. The first transistor includes a first conductor over a substrate; a first insulator thereover; a first oxide thereover; a second insulator over thereover; a second conductor including a side surface substantially aligned with a side surface of the second insulator and being over the second insulator; a third insulator including a side surface substantially aligned with a side surface of the second conductor and being over the second conductor; a fourth insulator in contact with a side surface of the second insulator, a side surface of the second conductor, and a side surface of the third insulator; and a fifth insulator in contact with the first oxide and the fourth insulator.
    Type: Application
    Filed: November 14, 2017
    Publication date: May 17, 2018
    Inventors: Shunpei YAMAZAKI, Kiyoshi KATO, Yuta ENDO, Ryo TOKUMARU
  • Publication number: 20180076296
    Abstract: A semiconductor device having stable electrical characteristics is provided. A semiconductor device that can be miniaturized or highly integrated is provided. One embodiment of the present invention includes a transistor including an oxide, a first barrier layer over the transistor, and a second barrier layer in contact with the first barrier layer. The oxide is in contact with an insulator including an excess-oxygen region. The insulator is in contact with the first barrier layer. The first barrier layer has a thickness greater than or equal to 0.5 nm and less than or equal to 1.5 nm. The second barrier layer is thicker than the first barrier layer.
    Type: Application
    Filed: September 7, 2017
    Publication date: March 15, 2018
    Inventors: Yasumasa YAMANE, Ryo TOKUMARU, Hiromi SAWAI
  • Publication number: 20170352746
    Abstract: A change in electrical characteristics is suppressed and reliability in a semiconductor device using a transistor including an oxide semiconductor is improved. Oxygen is introduced into a surface of an insulating film, and then, an oxide semiconductor, a layer which is capable of blocking oxygen, a gate insulating film, and other films which composes a transistor are formed. For at least one of the first gate insulating film and the insulating film, three signals in Electron Spin Resonance Measurement are each observed in a certain range of g-factor. Reducing the sum of the spin densities of the signals will improve reliability of the semiconductor device.
    Type: Application
    Filed: July 31, 2017
    Publication date: December 7, 2017
    Inventors: Shunpei YAMAZAKI, Akihisa SHIMOMURA, Yasumasa YAMANE, Yuhei SATO, Tetsuhiro TANAKA, Masashi TSUBUKU, Toshihiko TAKEUCHI, Ryo TOKUMARU, Mitsuhiro ICHIJO, Satoshi TORIUMI, Takashi OHTSUKI, Toshiya ENDO
  • Patent number: 9831326
    Abstract: A method for manufacturing a semiconductor device includes the steps of forming a first insulating film over a first gate electrode over a substrate while heated at a temperature higher than or equal to 450° C. and lower than the strain point of the substrate, forming a first oxide semiconductor film over the first insulating film, adding oxygen to the first oxide semiconductor film and then forming a second oxide semiconductor film over the first oxide semiconductor film, and performing heat treatment so that part of oxygen contained in the first oxide semiconductor film is transferred to the second oxide semiconductor film.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: November 28, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Tetsuhiro Tanaka, Masayuki Sakakura, Ryo Tokumaru, Yasumasa Yamane, Yuhei Sato
  • Patent number: 9806200
    Abstract: A semiconductor device including a miniaturized transistor is provided. The semiconductor device includes a first insulator, a second insulator, a semiconductor, and a conductor. The semiconductor is over the first insulator. The second insulator is over the semiconductor. The conductor is over the second insulator. The semiconductor includes a first region, a second region, and a third region. The first region is a region where the semiconductor overlaps with the conductor. Each of the second region and the third region is a region where the semiconductor does not overlap with the conductor. The second region and the third region each have a region with a spinel crystal structure.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: October 31, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Tetsuhiro Tanaka, Masayuki Kimura, Ryo Tokumaru, Daisuke Matsubayashi, Yasumasa Yamane
  • Publication number: 20170309752
    Abstract: A highly reliable semiconductor device is provided. The semiconductor device includes a first barrier insulating film; a first gate electrode thereover; a first gate insulating film thereover; an oxide semiconductor film thereover; source and drain electrodes over the oxide semiconductor film; a second gate insulating film over the oxide semiconductor film; a second gate electrode over the second gate insulating film; a second barrier insulating film that covers the oxide semiconductor film, the source and the drain electrodes, and the second gate electrode, and is in contact with side surfaces of the oxide semiconductor film and the source and drain electrodes; and a third barrier insulating film thereover. The first to third barrier insulating films are less likely to transmit hydrogen, water, and oxygen than the first and second gate insulating films. The third barrier insulating film is thinner than the second barrier insulating film.
    Type: Application
    Filed: April 17, 2017
    Publication date: October 26, 2017
    Inventors: Shunpei YAMAZAKI, Daisuke MATSUBAYASHI, Ryo TOKUMARU, Yasumasa YAMANE, Kiyofumi OGINO, Taichi ENDO, Hajime KIMURA
  • Publication number: 20170294542
    Abstract: A transistor with stable electrical characteristics is provided. The transistor includes a first insulator over a substrate; first to third oxide insulators over the first insulator; a second insulator over the third oxide insulator; a first conductor over the second insulator; and a third insulator over the first conductor. An energy level of a conduction band minimum of each of the first and second oxide insulators is closer to a vacuum level than that of the oxide semiconductor is. An energy level of a conduction band minimum of the third oxide insulator is closer to the vacuum level than that of the second oxide insulator is. The first insulator contains oxygen. The number of oxygen molecules released from the first insulator measured by thermal desorption spectroscopy is greater than or equal to 1E14 molecules/cm2 and less than or equal to 1E16 molecules/cm2.
    Type: Application
    Filed: June 26, 2017
    Publication date: October 12, 2017
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei YAMAZAKI, Tetsuhiro TANAKA, Akihisa SHIMOMURA, Yasumasa YAMANE, Ryo TOKUMARU, Yuhei SATO, Kazuhiro TSUTSUI
  • Patent number: 9722056
    Abstract: A change in electrical characteristics is suppressed and reliability in a semiconductor device using a transistor including an oxide semiconductor is improved. Oxygen is introduced into a surface of an insulating film, and then, an oxide semiconductor, a layer which is capable of blocking oxygen, a gate insulating film, and other films which composes a transistor are formed. For at least one of the first gate insulating film and the insulating film, three signals in Electron Spin Resonance Measurement are each observed in a certain range of g-factor. Reducing the sum of the spin densities of the signals will improve reliability of the semiconductor device.
    Type: Grant
    Filed: September 27, 2016
    Date of Patent: August 1, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Akihisa Shimomura, Yasumasa Yamane, Yuhei Sato, Tetsuhiro Tanaka, Masashi Tsubuku, Toshihiko Takeuchi, Ryo Tokumaru, Mitsuhiro Ichijo, Satoshi Toriumi, Takashi Ohtsuki, Toshiya Endo
  • Patent number: 9698277
    Abstract: A transistor with stable electrical characteristics is provided. The transistor includes a first insulator over a substrate; first to third oxide insulators over the first insulator; a second insulator over the third oxide insulator; a first conductor over the second insulator; and a third insulator over the first conductor. An energy level of a conduction band minimum of each of the first and second oxide insulators is closer to a vacuum level than that of the oxide semiconductor is. An energy level of a conduction band minimum of the third oxide insulator is closer to the vacuum level than that of the second oxide insulator is. The first insulator contains oxygen. The number of oxygen molecules released from the first insulator measured by thermal desorption spectroscopy is greater than or equal to 1E14 molecules/cm2 and less than or equal to 1E16 molecules/cm2.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: July 4, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Tetsuhiro Tanaka, Akihisa Shimomura, Yasumasa Yamane, Ryo Tokumaru, Yuhei Sato, Kazuhiro Tsutsui
  • Patent number: 9653613
    Abstract: Provided is a transistor with stable electrical characteristics. Provided is a semiconductor device including an oxide semiconductor over a substrate, a first conductor in contact with a top surface of the oxide semiconductor, a second conductor in contact with the top surface of the oxide semiconductor, a first insulator over the first and second conductors and in contact with the top surface of the oxide semiconductor, a second insulator over the first insulator, a third conductor over the second insulator, and a third insulator over the third conductor. The third conductor overlaps with the first conductor with the first and second insulators positioned therebetween, and overlaps with the second conductor with the first and second insulators positioned therebetween. The first insulator contains oxygen. The second insulator transmits less oxygen than the first insulator. The third insulator transmits less oxygen than the first insulator.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: May 16, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Tetsuhiro Tanaka, Akihisa Shimomura, Ryo Tokumaru, Yasumasa Yamane, Yuhei Sato, Naoki Okuno, Motoki Nakashima
  • Publication number: 20170125553
    Abstract: A method for manufacturing a semiconductor device includes the steps of forming a first insulating film over a first gate electrode over a substrate while heated at a temperature higher than or equal to 450° C. and lower than the strain point of the substrate, forming a first oxide semiconductor film over the first insulating film, adding oxygen to the first oxide semiconductor film and then forming a second oxide semiconductor film over the first oxide semiconductor film, and performing heat treatment so that part of oxygen contained in the first oxide semiconductor film is transferred to the second oxide semiconductor film.
    Type: Application
    Filed: November 14, 2016
    Publication date: May 4, 2017
    Inventors: Shunpei YAMAZAKI, Tetsuhiro TANAKA, Masayuki SAKAKURA, Ryo TOKUMARU, Yasumasa YAMANE, Yuhei SATO