Patents by Inventor Sagy Levy

Sagy Levy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8633537
    Abstract: A semiconductor devices including non-volatile memories and methods of fabricating the same to improve performance thereof are provided. Generally, the device includes a memory transistor comprising a polysilicon channel region electrically connecting a source region and a drain region formed in a substrate, an oxide-nitride-nitride-oxide (ONNO) stack disposed above the channel region, and a high work function gate electrode formed over a surface of the ONNO stack. In one embodiment the ONNO stack includes a multi-layer charge-trapping region including an oxygen-rich first nitride layer and an oxygen-lean second nitride layer disposed above the first nitride layer. Other embodiments are also disclosed.
    Type: Grant
    Filed: July 1, 2012
    Date of Patent: January 21, 2014
    Assignee: Cypress Semiconductor Corporation
    Inventors: Igor Polishchuk, Sagy Levy, Krishnaswamy Ramkumar
  • Patent number: 8592891
    Abstract: A semiconductor device and method of fabricating the same are provided. In one embodiment, the semiconductor device includes a memory transistor with an oxide-nitride-nitride-oxide (ONNO) stack disposed above a channel region. The ONNO stack comprises a tunnel dielectric layer disposed above the channel region, a multi-layer charge-trapping region disposed above the tunnel dielectric layer, and a blocking dielectric layer disposed above the multi-layer charge-trapping region. The multi-layer charge-trapping region includes a substantially trap-free layer comprising an oxygen-rich nitride and a trap-dense layer disposed above the trap-free layer. The semiconductor device further includes a strain inducing structure including a strain inducing layer disposed proximal to the ONNO stack to increase charge retention of the multi-layer charge-trapping region. Other embodiments are also disclosed.
    Type: Grant
    Filed: July 1, 2012
    Date of Patent: November 26, 2013
    Assignee: Cypress Semiconductor Corp.
    Inventors: Igor Polishchuk, Sagy Levy, Krishnaswamy Ramkumar, Jeong Byun
  • Publication number: 20130307052
    Abstract: A method of scaling a nonvolatile trapped-charge memory device and the device made thereby is provided. In an embodiment, the method includes forming a channel region including polysilicon electrically connecting a source region and a drain region in a substrate. A tunneling layer is formed on the substrate over the channel region by oxidizing the substrate to form an oxide film and nitridizing the oxide film. A multi-layer charge trapping layer including an oxygen-rich first layer and an oxygen-lean second layer is formed on the tunneling layer, and a blocking layer deposited on the multi-layer charge trapping layer. In one embodiment, the method further includes a dilute wet oxidation to densify a deposited blocking oxide and to oxidize a portion of the oxygen-lean second layer.
    Type: Application
    Filed: July 1, 2012
    Publication date: November 21, 2013
    Applicant: CYPRESS SEMICONDUCTOR CORPORATION
    Inventors: Fredrick JENNE, Sagy LEVY, Krishnaswamy RAMKUMAR
  • Publication number: 20130309826
    Abstract: A method for fabricating a nonvolatile charge trap memory device is described. The method includes subjecting a substrate to a first oxidation process to form a tunnel oxide layer overlying a polysilicon channel, and forming over the tunnel oxide layer a multi-layer charge storing layer comprising an oxygen-rich, first layer comprising a nitride, and an oxygen-lean, second layer comprising a nitride on the first layer. The substrate is then subjected to a second oxidation process to consume a portion of the second layer and form a high-temperature-oxide (HTO) layer overlying the multi-layer charge storing layer. The stoichiometric composition of the first layer results in it being substantially trap free, and the stoichiometric composition of the second layer results in it being trap dense. The second oxidation process can comprise a plasma oxidation process or a radical oxidation process using In-Situ Steam Generation.
    Type: Application
    Filed: July 1, 2012
    Publication date: November 21, 2013
    Applicant: CYPRESS SEMICONDUCTOR CORPORATION
    Inventors: Krishnaswamy RAMKUMAR, Sagy LEVY, Jeong BYUN
  • Publication number: 20130306975
    Abstract: Scaling a charge trap memory device and the article made thereby. In one embodiment, the charge trap memory device includes a substrate having a source region, a drain region, and a channel region electrically connecting the source and drain. A tunnel dielectric layer is disposed above the substrate over the channel region, and a multi-layer charge-trapping region disposed on the tunnel dielectric layer.
    Type: Application
    Filed: July 1, 2012
    Publication date: November 21, 2013
    Applicant: CYPRESS SEMICONDUCTOR CORPORATION
    Inventors: Sagy LEVY, Fredrick JENNE, Krishnaswamy RAMKUMAR
  • Publication number: 20130307053
    Abstract: A semiconductor devices including non-volatile memories and methods of fabricating the same to improve performance thereof are provided. Generally, the device includes a memory transistor comprising a polysilicon channel region electrically connecting a source region and a drain region formed in a substrate, an oxide-nitride-nitride-oxide (ONNO) stack disposed above the channel region, and a high work function gate electrode formed over a surface of the ONNO stack. In one embodiment the ONNO stack includes a multi-layer charge-trapping region including an oxygen-rich first nitride layer and an oxygen-lean second nitride layer disposed above the first nitride layer. Other embodiments are also disclosed.
    Type: Application
    Filed: July 1, 2012
    Publication date: November 21, 2013
    Applicant: CYPRESS SEMICONDUCTOR CORPORATION
    Inventors: Igor POLISHCHUK, Sagy LEVY, Krishnaswamy RAMKUMAR
  • Publication number: 20130175504
    Abstract: An embodiment of a semiconductor memory device including a multi-layer charge storing layer and methods of forming the same are described. Generally, the device includes a channel formed from a semiconducting material overlying a surface on a substrate connecting a source and a drain of the memory device; a tunnel oxide layer overlying the channel; and a multi-layer charge storing layer including an oxygen-rich, first oxynitride layer on the tunnel oxide layer in which a stoichiometric composition of the first oxynitride layer results in it being substantially trap free, and an oxygen-lean, second oxynitride layer on the first oxynitride layer in which a stoichiometric composition of the second oxynitride layer results in it being trap dense. In one embodiment, the device comprises a non-planar transistor including a gate having multiple surfaces abutting the channel, and the gate comprises the tunnel oxide layer and the multi-layer charge storing layer.
    Type: Application
    Filed: March 31, 2012
    Publication date: July 11, 2013
    Applicant: CYPRESS SEMICONDUCTOR CORPORATION
    Inventors: Sagy Levy, Krishnaswamy Ramkumar, Fredrick Jenne, Sam Geha
  • Publication number: 20130175604
    Abstract: An embodiment of a nonvolatile charge trap memory device is described. In one embodiment, the device comprises a channel comprising silicon overlying a surface on a substrate electrically connecting a first diffusion region and a second diffusion region of the memory device, and a gate stack intersecting and overlying at least a portion of the channel, the gate stack comprising a tunnel oxide abutting the channel, a split charge-trapping region abutting the tunnel oxide, and a multi-layer blocking dielectric abutting the split charge-trapping region. The split charge-trapping region includes a first charge-trapping layer comprising a nitride closer to the tunnel oxide, and a second charge-trapping layer comprising a nitride overlying the first charge-trapping layer. The multi-layer blocking dielectric comprises at least a high-K dielectric layer.
    Type: Application
    Filed: March 31, 2012
    Publication date: July 11, 2013
    Applicant: CYPRESS SEMICONDUCTOR CORPORATION
    Inventors: Igor Polishchuk, Sagy Levy, Krishnaswamy Ramkumar
  • Publication number: 20130178031
    Abstract: An embodiment of a method of integrating a non-volatile memory device into a logic MOS flow is described. Generally, the method includes: forming in a first region of a substrate a channel of a memory device from a semiconducting material overlying a surface of the substrate, the channel connecting a source and a drain of the memory device; forming a charge trapping dielectric stack over the channel adjacent to a plurality of surfaces of the channel, wherein the charge trapping dielectric stack includes a blocking layer on a charge trapping layer over a tunneling layer; and forming a MOS device over a second region of the substrate.
    Type: Application
    Filed: March 31, 2012
    Publication date: July 11, 2013
    Applicant: CYPRESS SEMICONDUCTOR CORPORATION
    Inventors: Krishnaswamy Ramkumar, Fredrick Jenne, Sagy Levy
  • Patent number: 8318608
    Abstract: A method for fabricating a nonvolatile charge trap memory device is described. The method includes providing a substrate having a charge-trapping layer disposed thereon. A portion of the charge-trapping layer is then oxidized to form a blocking dielectric layer above the charge-trapping layer by exposing the charge-trapping layer to a radical oxidation process.
    Type: Grant
    Filed: August 25, 2008
    Date of Patent: November 27, 2012
    Assignee: Cypress Semiconductor Corporation
    Inventors: Krishnaswamy Ramkumar, Sagy Levy, Jeong Byun
  • Patent number: 8163660
    Abstract: A method for fabricating a nonvolatile charge trap memory device is described. The method includes forming a first oxide layer on a surface of a substrate. The first oxide layer is exposed to a first decoupled plasma nitridation process having a first bias. Subsequently, a charge-trapping layer is formed on the first oxide layer. The charge-trapping layer is exposed to an oxidation process and then to a second decoupled plasma nitridation process having a second, different, bias.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: April 24, 2012
    Assignee: Cypress Semiconductor Corporation
    Inventors: Helmut Puchner, Igor Polishchuk, Sagy Levy
  • Patent number: 8093128
    Abstract: A semiconductor structure and method to form the same. The semiconductor structure includes a substrate having a non-volatile charge trap memory device disposed on a first region and a logic device disposed on a second region. A charge trap dielectric stack may be formed subsequent to forming wells and channels of the logic device. HF pre-cleans and SC1 cleans may be avoided to improve the quality of a blocking layer of the non-volatile charge trap memory device. The blocking layer may be thermally reoxidized or nitridized during a thermal oxidation or nitridation of a logic MOS gate insulator layer to densify the blocking layer. A multi-layered liner may be utilized to first offset a source and drain implant in a high voltage logic device and also block silicidation of the nonvolatile charge trap memory device.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: January 10, 2012
    Assignee: Cypress Semiconductor Corporation
    Inventors: William W. C. Koutny, Jr., Sam Geha, Igor Kouznetsov, Krishnaswamy Ramkumar, Fredrick B. Jenne, Sagy Levy, Ravindra Kapre, Jeremy Warren
  • Patent number: 8088683
    Abstract: Deposition and anneal operations are iterated to break a deposition into a number of sequential deposition-anneal operations to reach a desired annealed dielectric layer thickness. In one particular embodiment, a two step anneal is performed including an NH3 or ND3 ambient followed by an N2O or NO ambient. In one embodiment, such a method is employed to form a dielectric layer having a stoichiometry attainable with only a deposition process but with a uniform material quality uncharacteristically high of a deposition process. In particular embodiments, sequential deposition-anneal operations provide an annealed first dielectric layer upon which a second dielectric layer may be left substantially non-annealed.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: January 3, 2012
    Assignee: Cypress Semiconductor Corporation
    Inventors: Krishnaswamy Ramkumar, Sagy Levy
  • Patent number: 8067284
    Abstract: A semiconductor device including a bilayer charge storing layer and methods of forming the same are provided. Generally, the method includes: (i) forming a first layer of the bilayer charge storing layer; and (ii) forming a second layer formed on a surface of the first layer, the second layer including an oxynitride charge trapping layer. Preferably, the first layer includes a substantially trap free oxynitride layer. More preferably, the oxynitride charge trapping layer includes a significantly higher stoichiometric composition of silicon than that of the first layer. In certain embodiments, the oxynitride charge trapping layer has a concentration of carbon selected to increase the number of traps therein. Other embodiments are also disclosed.
    Type: Grant
    Filed: January 8, 2008
    Date of Patent: November 29, 2011
    Assignee: Cypress Semiconductor Corporation
    Inventor: Sagy Levy
  • Patent number: 8063434
    Abstract: An embodiment of a semiconductor device includes a non-volatile memory transistor including an oxide-nitride-oxide (ONO) dielectric stack on a surface of a semiconductor substrate, the ONO dielectric stack comprising a multilayer charge storage layer including a silicon-rich, oxygen-lean top silicon oxynitride layer and a silicon-rich, oxygen-rich bottom silicon oxynitride layer, and a metal oxide semiconductor (MOS) logic transistor including a gate oxide and a high work function gate electrode.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: November 22, 2011
    Assignee: Cypress Semiconductor Corporation
    Inventors: Igor Polishchuk, Sagy Levy, Krishnaswamy Ramkumar
  • Publication number: 20110248332
    Abstract: A semiconductor device including a silicon-oxide-oxynitride-oxide-silicon structure and methods of forming the same are provided. Generally, the structure comprises: a tunnel oxide layer on a surface of a substrate including silicon; a multi-layer charge storing layer including an oxygen-rich, first oxynitride layer on the tunnel oxide layer in which the stoichiometric composition of the first oxynitride layer results in it being substantially trap free, and an oxygen-lean, second oxynitride layer on the first oxynitride layer in which the stoichiometric composition of the second oxynitride layer results in it being trap dense; a blocking oxide layer on the second oxynitride layer; and a silicon containing gate layer on the blocking oxide layer. Other embodiments are also disclosed.
    Type: Application
    Filed: January 14, 2011
    Publication date: October 13, 2011
    Inventors: Sagy Levy, Krishnaswamy Ramkumar, Fredrick Jenne, Sam Geha
  • Patent number: 7898852
    Abstract: Methods and apparatus for programming and sensing a bi-nitride layer trapped-charge memory device in one of a first and second programmed states or one of a first and second erased states, where the first and second programmed states correspond to first and second uniform trapped charge distributions of a first charge type and the first and second erased states correspond to first and second uniform trapped charge distributions of a second charge type.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: March 1, 2011
    Assignee: Cypress Semiconductor Corporation
    Inventors: Sagy Levy, Krishnaswamy Ramkumar, Peter Voss
  • Patent number: 7880219
    Abstract: A nonvolatile charge trap memory device and a method to form the same are described. The device includes a channel region having a channel length with <100> crystal plane orientation. The channel region is between a pair of source and drain regions and a gate stack is disposed above the channel region.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: February 1, 2011
    Assignee: Cypress Semiconductor Corporation
    Inventors: Igor Polishchuk, Sagy Levy, Krishnaswamy Ramkumar
  • Patent number: 7799670
    Abstract: A blocking layer of a non-volatile charge trap memory device is formed by oxidizing a portion of a charge trapping layer of the memory device. In one embodiment, the blocking layer is grown by a radical oxidation process at temperature below 500° C. In accordance with one implementation, the radical oxidation process involves flowing hydrogen (H2) and oxygen (O2) gas mixture into a process chamber and exposing the substrate to a plasma. In a preferred embodiment, a high density plasma (HDP) chamber is employed to oxidize a portion of the charge trapping layer. In further embodiments, a portion of a silicon-rich silicon oxynitride charge trapping layer is consumptively oxidized to form the blocking layer and provide an increased memory window relative to oxidation of a nitrogen-rich silicon oxynitride layer.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: September 21, 2010
    Assignee: Cypress Semiconductor Corporation
    Inventors: Krishnaswamy Ramkumar, Sagy Levy, Jeong Byun
  • Patent number: 7670963
    Abstract: A method for fabricating a nonvolatile charge trap memory device is described. The method includes first forming a tunnel dielectric layer on a substrate in a first process chamber of a single-wafer cluster tool. A charge-trapping layer is then formed on the tunnel dielectric layer in a second process chamber of the single-wafer cluster tool. A top dielectric layer is then formed on the charge-trapping layer in the second or in a third process chamber of the single-wafer cluster tool.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: March 2, 2010
    Assignee: Cypress Semiconductor Corportion
    Inventors: Krishnaswamy Ramkumar, Sagy Levy