Patents by Inventor Sahejad Patel

Sahejad Patel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10814495
    Abstract: Systems and methods for securing a remotely operated vehicle (ROV) to a subsea structure during cleaning, maintenance, or inspection of the structure surface are provided. In one or more embodiments, an attachment mechanism includes a pair of grasping hooks that are raised and lowered when driven by a motorized drive. In one or more embodiments, an attachment mechanism includes a rigid holder having a mechanical stop and connected to a swing arm, the swing arm configured to rotate inward, but not outward beyond the mechanical stop. In one or more embodiments, an attachment mechanism includes a plurality of linked segments in series, each connected at a plurality of pivot points. A pair of wires passes through the plurality of linked segments and connects to a pair of pulleys that extend or retract the wires, thereby rotating the plurality of linked segments.
    Type: Grant
    Filed: November 12, 2018
    Date of Patent: October 27, 2020
    Assignee: SAUDI ARABIAN OIL COMPANY
    Inventors: Sahejad Patel, Fadl Abdellatif, Hassane Trigui, Ali Outa, Abdullah Arab
  • Publication number: 20200300688
    Abstract: A self-calibrating system, apparatus, and method for accurately measuring a volumetric capacity of a tank. The system, apparatus and method comprise: a mechanism that adjusts a level of a platform; a light-emitting device with beam-like optics (laser, diode, etc.) mounted to the platform; mechanism for adjusting alignment of the light-emitting device with respect to the platform; a mechanism for rotating the platform by variable angles, including by 180-degrees; one or more level sensors (such as, for example, spirit levels, tilt sensors, or other devices) that provide feedback on the alignment of the platform normal to the gravity vector.
    Type: Application
    Filed: June 4, 2020
    Publication date: September 24, 2020
    Inventors: Sahejad Patel, Brian Parrott, Abdullah Arab, Fadl Abdellatif, Pablo Carrasco Zanini
  • Patent number: 10766147
    Abstract: A buoyancy module for use with a water environment robotic system of the type having an underwater robotic vehicle having a winch has a buoyancy configuration which can be selectively altered. The system includes a module that is configured to be repeatedly, selectively buoyantly engaged and buoyantly disengaged with the underwater robotic vehicle. A tether is connected to the module and is extendable and retractable in response to operation of the winch. Extending and retracting the module can buoyantly engage or buoyantly disengage the buoyancy module with the underwater robotic vehicle according to the operation of a state controller. By engaging and disengaging the buoyancy module, the buoyancy of the underwater robot can be selectively altered. A method is also disclosed.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: September 8, 2020
    Assignee: Saudi Arabian Oil Company
    Inventors: Hassane Trigui, Ali Outa, Sahejad Patel, Fadl Abdellatif
  • Patent number: 10724669
    Abstract: An in-pipe inspection or maintenance apparatus comprises: a single rotational and radial deployment mechanism to both rotationally deploy a probe or tool about an inner circumference of a pipe with respect to the axis of the pipe and radially deploy the probe or tool to first and second target points on the inner circumference; and a single actuator to automatically actuate the rotational and radial deployment mechanism to perform both the rotational and radial deployments of the probe or tool. The rotational and radial deployment mechanism is further configured to: rotate the probe or tool and radially extend the probe or tool to the first target point in response to the single actuator actuating the rotational and radial deployment mechanism; and rotate the probe or tool from the first target point to the second target point in response to the single actuator further actuating the rotational and radial deployment mechanism.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: July 28, 2020
    Assignee: Saudi Arabian Oil Company
    Inventors: Abdoulelah Al-Hannabi, Mohamed Abdelkader, Hassane Trigui, Sahejad Patel, Fadl Abdellatif
  • Patent number: 10697820
    Abstract: A self-calibrating system, apparatus, and method for accurately measuring a volumetric capacity of a tank. The system, apparatus and method comprise: a mechanism that adjusts a level of a platform; a light-emitting device with beam-like optics (laser, diode, etc.) mounted to the platform; mechanism for adjusting alignment of the light-emitting device with respect to the platform; a mechanism for rotating the platform by variable angles, including by 180-degrees; one or more level sensors (such as, for example, spirit levels, tilt sensors, or other devices) that provide feedback on the alignment of the platform normal to the gravity vector.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: June 30, 2020
    Assignee: Saudi Arabian Oil Company
    Inventors: Sahejad Patel, Brian Parrott, Abdullah Arab, Fadl Abdellatif, Pablo Carrasco Zanini
  • Publication number: 20200172184
    Abstract: A robotic vehicle for traversing surfaces comprises a chassis having a plurality of wheels mounted thereto. Two magnetic drive wheels are spaced apart in a lateral direction and rotate about a rotational axis while a stabilizing wheel is provided in front of or behind the two drive wheels. The drive wheels are configured to be driven independently, thereby driving and steering the vehicle along the surface. The vehicle also includes a sensor probe assembly that is supported by the chassis and configured to take measurements of the surface being traversed. In accordance with a salient aspect, the vehicle includes a probe normalization mechanism that is configured to determine the surface curvature and adjust the orientation of the probe transducer as a function of the curvature of the surface, thereby maintaining the probe at the preferred inspection angle irrespective of changes in the surface curvature with vehicle movement.
    Type: Application
    Filed: November 20, 2019
    Publication date: June 4, 2020
    Inventors: Fadl Abdellatif, Abdoulelah Al-Hannabi, Sahejad Patel, Mohamed Abdelkader, Jeff S. Shamma
  • Patent number: 10551296
    Abstract: This application discloses integrated probes and probe systems, which can be attached to the robotic arms of a remotely operated vehicle to perform both cathodic protection (CP) voltage measurements and ultrasonic testing (UT) thickness measurements at an underwater surface. In some embodiments, the integrated probe system couples an inner and outer gimbal together such that one or more electrically conductive legs pass from the outer gimbal through the inner gimbal. These legs are arranged about an ultrasonic sensor which extends from the front surface of the inner gimbal. When the integrated probe contacts the underwater surface, both the ultrasonic sensor and at least one leg contact the surface, thereby providing substantially simultaneous CP and UT measurements.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: February 4, 2020
    Assignee: Saudi Arabian Oil Company
    Inventors: Fadl Abdellatif, Hamad Al-Saiari, Ali Outa, Ayman Amer, Sahejad Patel, Ameen Obedan, Hassane Trigui
  • Publication number: 20190344452
    Abstract: A buoyancy module for use with a water environment robotic system of the type having an underwater robotic vehicle having a winch has a buoyancy configuration which can be selectively altered. The system includes a module that is configured to be repeatedly, selectively buoyantly engaged and buoyantly disengaged with the underwater robotic vehicle. A tether is connected to the module and is extendable and retractable in response to operation of the winch. Extending and retracting the module can buoyantly engage or buoyantly disengage the buoyancy module with the underwater robotic vehicle according to the operation of a state controller. By engaging and disengaging the buoyancy module, the buoyancy of the underwater robot can be selectively altered. A method is also disclosed.
    Type: Application
    Filed: July 23, 2019
    Publication date: November 14, 2019
    Inventors: Hassane Trigui, Ali Outa, Sahejad Patel, Fadl Abdellatif
  • Patent number: 10456924
    Abstract: A two-part, selectively dockable robotic system having counterbalanced stabilization during performance of an operation on an underwater target structure is provided. The robotic system includes a first underwater robotic vehicle that is sized and shaped to at least partially surround the underwater target structure. A second underwater robotic vehicle is sized and shaped to at least partially surround the underwater target structure and selectively dock with the first underwater robotic vehicle. The first and second robotic vehicles include complimentary docking mechanisms that permit the vehicles to selectively couple to each other with the underwater target structure disposed at least partially therebetween. One robot includes a tool that can act upon the target structure and the other robot includes a stabilization module that can act upon the target structure in an opposite manner in order to counterbalance the force of the tool.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: October 29, 2019
    Assignee: Saudi Arabian Oil Company
    Inventors: Ali Outa, Fadl Abdellatif, Sahejad Patel, Hassane Trigui
  • Publication number: 20190289993
    Abstract: A cleaning device that passively self-adjusts to improve biofoul removal across curved, non-uniform, or irregular underwater surfaces. The cleaning device includes a motor, one or more shafts coupled to the motor and coupled to one another via at least one universal joint, and a cleaning mechanism for removing biofoul from the target surface. The cleaning device includes an alignment mechanism that restricts the cleaning mechanism's movement to improve biofoul removal. The alignment mechanism can include bearings, spring components, dampening material, adhesion components, floatation objects, or a combination thereof.
    Type: Application
    Filed: June 11, 2019
    Publication date: September 26, 2019
    Inventors: Ali Outa, Fadl Abdellatif, Ayman Amer, Sahejad Patel, Hassane Trigui, Ameen Obedan
  • Patent number: 10392086
    Abstract: A system for underwater remotely operated vehicles (ROVs) and wirelessly controlled subsystems is provided. The system comprises an ROV and a subsystem mounted to the ROV. The ROV includes a microcontroller, a main battery, and a transmitter-receiver. The subsystem includes a controller and a transmitter-receiver. The ROV is configured to communicate wirelessly with the subsystem via signals transmitted between the ROV transmitter-receiver and the subsystem transmitter-receiver. The system can further comprise a control center having a transmitter-receiver configured to communicate wirelessly with the ROV transmitter-receiver and the subsystem transmitter-receiver. The system can further comprise at least one relay module configured to relay signals between the transmitter-receivers of the system. The ROV of the system can also be configured to wirelessly transfer power from the main battery to the power source of the subsystem, such as by resonance coupling.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: August 27, 2019
    Assignee: SAUDI ARABIAN OIL COMPANY
    Inventors: Hassane Trigui, Sahejad Patel, Ali Outa, Ayman Amer, Fadl Abdellatif, Ameen Obedan
  • Publication number: 20190242743
    Abstract: Disclosed herein are systems and methods for profiling a surface. In some embodiments, the systems and methods perform profiling using a robotic vehicle. The vehicle can include a drive system, one or more wheel encoders, and one or more distance sensors and/or inertial measurement units for capturing measurement data, such as the slope of the surface or the angle of the robotic vehicle relative to the surface or the gravity vector. A control computing system is included having one or more processors that execute instructions stored in software modules to process movement data. In some embodiments, the processed movement data determines a plurality of snapshots of the surface at different times and positions as the robotic vehicle traverses the surface. These snapshots are combined to generate a profile of the surface.
    Type: Application
    Filed: September 5, 2018
    Publication date: August 8, 2019
    Inventors: Sahejad Patel, Fadl Abdellatif, Brian Parrott
  • Publication number: 20190242701
    Abstract: A sensing device for measuring an offset along a longitudinal axis comprises a housing including a plurality of slots, two or more arrays of optical sensors aligned along the longitudinal axis, at least one of the arrays being offset along the longitudinal axis with respect to the other arrays and a microcontroller coupled to the two or more arrays of optical sensors and configured to determine a positional offset along the longitudinal axis at which light is detected by at least one of arrays of optical sensors. In some embodiments, each of the optical sensors of the arrays are positioned within the housing underneath one of the plurality of slots to reduce an angle of incidence of radiation received.
    Type: Application
    Filed: August 10, 2018
    Publication date: August 8, 2019
    Inventors: Brian Parrott, Sahejad Patel, Fadl Abdellatif, Pablo Carrasco Zanini, Ayman Amer, Ali Outa, Abdullah Arab
  • Publication number: 20190242742
    Abstract: A self-calibrating system, apparatus, and method for accurately measuring a volumetric capacity of a tank. The system, apparatus and method comprise: a mechanism that adjusts a level of a platform; a light-emitting device with beam-like optics (laser, diode, etc.) mounted to the platform; mechanism for adjusting alignment of the light-emitting device with respect to the platform; a mechanism for rotating the platform by variable angles, including by 180-degrees; one or more level sensors (such as, for example, spirit levels, tilt sensors, or other devices) that provide feedback on the alignment of the platform normal to the gravity vector.
    Type: Application
    Filed: May 2, 2018
    Publication date: August 8, 2019
    Inventors: Sahejad Patel, Brian Parrott, Abdullah Arab, Fadl Abdellatif, Pablo Carrasco Zanini
  • Patent number: 10369705
    Abstract: A water environment robotic system and method has a buoyancy configuration which can be selectively altered. The system includes an underwater robotic vehicle and a buoyancy module that is configured to be repeatedly, selectively buoyantly engaged and buoyantly disengaged with the underwater robotic vehicle. A tether is connected to the buoyancy module and a motor is operatively connected to the tether and is configured to extend and retract the tether and buoyancy module. The tether can be extended and retracted to extend and retract the buoyancy module. Extending and retracting the buoyancy module can buoyantly engage or buoyantly disengage the buoyancy module with the underwater robotic vehicle according to the arrangement of the system. By engaging and disengaging the buoyancy module, the buoyancy of the underwater robot can be selectively altered.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: August 6, 2019
    Assignee: Saudi Arabian Oil Company
    Inventors: Hassane Trigui, Ali Outa, Sahejad Patel, Fadl Abdellatif
  • Patent number: 10342326
    Abstract: A cleaning device that passively self-adjusts to improve biofoul removal across curved, non-uniform, or irregular underwater surfaces. The cleaning device includes a motor, one or more shafts coupled to the motor and coupled to one another via at least one universal joint, and a cleaning mechanism for removing biofoul from the target surface. The cleaning device includes an alignment mechanism that restricts the cleaning mechanism's movement to improve biofoul removal. The alignment mechanism can include bearings, spring components, dampening material, adhesion components, floatation objects, or a combination thereof.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: July 9, 2019
    Assignee: Saudi Arabian Oil Company
    Inventors: Ali Outa, Fadl Abdellatif, Ayman Amer, Sahejad Patel, Hassane Trigui, Ameen Obedan
  • Patent number: 10317372
    Abstract: The present apparatus is configured to carry an instrument or probe and optionally deploy it against a surface, such as a metal pipeline or storage tank. The apparatus can include a sensor probe for inspecting the integrity of the surface and a first linkage that is operatively coupled to the sensor probe and configured to move the sensor probe according to a first path (in a first direction/first degree of freedom). An actuator can be operatively connected to the first linkage for moving the first linkage so as to move the sensor probe along the first path. A second linkage is operatively connected to the sensor probe and configured to passively move the sensor probe according to a second degree of freedom to cause the sensor probe to become normal to the surface when at least a portion of the apparatus contacts the surface.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: June 11, 2019
    Assignees: HIBOT CORPORATION, SAUDI ARABIAN OIL COMPANY
    Inventors: Pablo Carrasco Zanini, Fadl Abdellatif, Sahejad Patel, Shigeo Hirose, Michele Guarnieri, Paulo Debenest
  • Patent number: 10272980
    Abstract: A method for performing operations using a water environment robotic system on a target section of pipeline located in an underwater environment is provided. The method includes the steps of deploying the underwater robotic vehicle into the water and visually inspecting the underwater environment to locate the pipeline and its plurality of weld joints. A cleaning operation is performed at one of the plurality of weld joints using the underwater robotic vehicle. The robotic vehicle can land on the sea floor and deploy a robotic arm to inspect the cleaned weld joint. The underwater can then swim to a next weld joint and land and perform cleaning and inspection operations, which can be repeated until all inspection sites are inspected.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: April 30, 2019
    Assignee: Saudi Arabian Oil Company
    Inventors: Fadl Abdellatif, Ali Outa, Sahejad Patel, Ayman Amer, Hassane Trigui
  • Publication number: 20190111572
    Abstract: A water environment robotic system and method has a buoyancy configuration which can be selectively altered. The system includes an underwater robotic vehicle and a buoyancy module that is configured to be repeatedly, selectively buoyantly engaged and buoyantly disengaged with the underwater robotic vehicle. A tether is connected to the buoyancy module and a motor is operatively connected to the tether and is configured to extend and retract the tether and buoyancy module. The tether can be extended and retracted to extend and retract the buoyancy module. Extending and retracting the buoyancy module can buoyantly engage or buoyantly disengage the buoyancy module with the underwater robotic vehicle according to the arrangement of the system. By engaging and disengaging the buoyancy module, the buoyancy of the underwater robot can be selectively altered.
    Type: Application
    Filed: December 12, 2018
    Publication date: April 18, 2019
    Inventors: Hassane Trigui, Ali Outa, Sahejad Patel, Fadl Abdellatif
  • Publication number: 20190084163
    Abstract: Systems and methods for securing a remotely operated vehicle (ROV) to a subsea structure during cleaning, maintenance, or inspection of the structure surface are provided. In one or more embodiments, an attachment mechanism includes a pair of grasping hooks that are raised and lowered when driven by a motorized drive. In one or more embodiments, an attachment mechanism includes a rigid holder having a mechanical stop and connected to a swing arm, the swing arm configured to rotate inward, but not outward beyond the mechanical stop. In one or more embodiments, an attachment mechanism includes a plurality of linked segments in series, each connected at a plurality of pivot points. A pair of wires passes through the plurality of linked segments and connects to a pair of pulleys that extend or retract the wires, thereby rotating the plurality of linked segments.
    Type: Application
    Filed: November 12, 2018
    Publication date: March 21, 2019
    Inventors: Sahejad Patel, Fadl Abdellatif, Hassane Trigui, Ali Outa, Abdullah Arab