Patents by Inventor Sang-ouk Kim

Sang-ouk Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150183189
    Abstract: Provided are a graphene hydrogel, graphene hydrogel nanocomposite materials, and a preparation method thereof, wherein the graphene hydrogel includes pores between laminated graphene sheets, and the pores contain moisture. In addition, the graphene hydrogel nanocomposite materials include nanoparticles and porous pores between laminated graphene sheets, and the pores contain water.
    Type: Application
    Filed: August 6, 2014
    Publication date: July 2, 2015
    Inventors: Sang Ouk Kim, Uday Narayan Maiti, Joon Won Lim
  • Publication number: 20150187602
    Abstract: Provided is a nanoscale patterning method using self-assembly, wherein nanoscale patterns having desirable shapes such as a lamella shape, a cylinder shape, and the like, may be formed by using a self-assembly property of a block copolymer, and low segment interaction caused in a structure of 10 nm or less which is a disadvantage of the block copolymer may be prevented. In addition, even though single photolithography is used, pattern density may double as that of the existing nano patterns, and pitch and cycle of the patterns may be controlled to thereby be largely utilized for electronic apparatuses requiring high integration of circuits such as a semiconductor device, and the like.
    Type: Application
    Filed: December 26, 2014
    Publication date: July 2, 2015
    Inventors: Sang Ouk Kim, Hyoung-Seok Moon
  • Patent number: 9005756
    Abstract: Disclosed are block copolymer nanostructures formed on surface patterns different from nanostructure of the block copolymer and preparation methods thereof.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: April 14, 2015
    Assignee: Advanced Institute of Science and Technology
    Inventors: Sang Ouk Kim, Dong Ok Shin, Bong Hoon Kim
  • Publication number: 20140283970
    Abstract: The present invention provides a method for manufacturing a large-area film, the method comprising the steps of: dispersing various fine particles in a polar solvent to prepare a dispersion; adding water to the dispersion to prepare a mixture; and adding an organic solvent capable of generating Rayleigh-Benard convection to the mixture to induce the interfacial assembly of the fine particles, thereby forming the film. The invention also provides a large-area film manufactured by the method. According to the invention, a large-area, high-purity film can be quickly manufactured by a simple solution process, and the manufactured large-area film has excellent physical and electrical properties, and thus can be used in various applications.
    Type: Application
    Filed: February 22, 2014
    Publication date: September 25, 2014
    Applicant: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Sang Ouk Kim, Jong Won Shim
  • Patent number: 8808860
    Abstract: The present invention relates to a 3-dimensional nanostructure having nanomaterials stacked on a graphene substrate; and more specifically, to a 3-dimensional nanostructure having at least one nanomaterial selected from nanotubes, nanowires, nanorods, nanoneedles and nanoparticles grown on a reduced graphene substrate. The present invention enables the achievement of a synergy effect of the 3-dimensional nanostructure hybridizing 1-dimensional nanomaterials and 2-dimensional graphene. The nanostructure according to the present invention is excellent in flexibility and elasticity, and can easily be transferred to any substrate having a non-planar surface. Also, all junctions in nanomaterials, a metal catalyst and a graphene film system form the ohmic electrical contact, which allows the nanostructure to easily be incorporated into a field-emitting device.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: August 19, 2014
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Sang Ouk Kim, Won Jong Lee, Duck Hyun Lee, Tae Hee Han, Ji Eun Kim, Jin Ah Lee, Keon Jae Lee
  • Patent number: 8803406
    Abstract: There are provided a flexible nanocomposite generator and a method of manufacturing the same. A flexible nanocomposite generator according to the present invention includes a piezoelectric layer formed of a flexible matrix containing piezoelectric nanoparticles and carbon nanostructures; and electrode layers disposed on the upper and lower surfaces of both sides of the piezoelectric layer, in which according to a method for manufacturing a flexible nanocomposite generator according to the present invention and a flexible nanogenerator, it is possible to manufacture a flexible nanogenerator with a large area and a small thickness. Therefore, the nanogenerator may be used as a portion of a fiber or cloth. Accordingly, the nanogenerator according to the present invention generates power in accordance with bending of attached cloth, such that it is possible to continuously generate power in accordance with movement of a human body.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: August 12, 2014
    Assignee: KAIST (Korea Advanced Institute of Science and Technology)
    Inventors: Keon Jae Lee, Kwi-Il Park, Do Kyung Kim, Sang Ouk Kim, Geon-Tae Hwang
  • Patent number: 8729597
    Abstract: Provided is a method for controlling a device using a doped carbon-nanostructure, and a device including the doped carbon-nanostructure, in which the method for controlling the device selectively controls the mobility of electrons or holes using N-type or P-type doped carbon-nanostructure; the N-type or P-type impurities-doped carbon-nanostructure can selectively control the transport of electrons or holes according to a doped material; and also since the doped carbon-nanostructure limits the transport of charge that is the opposite charge to the transport facilitating charge, it can improve the efficiency of device by adding to a functional layer of device or using as a separate layer in the electrons or holes-only transporting device.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: May 20, 2014
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Sang Ouk Kim, Ji Sun Park, Ju Min Lee, Myoung Hoon Song
  • Patent number: 8722442
    Abstract: Provided is a transparent graphene film which is prepared by maintaining the primary reduced state of a graphene oxide thin film via chemical reduction, reducing the graphene oxide thin film with chemical vapor deposition, and doping nitrogen, thereby enhancing the conductivity and enabling the control of work function and a manufacturing method thereof. According to the present disclosure, a flexible, transparent, electrical conductivity-enhanced, and work function controllable graphene film can be large area processed and produced in large quantities so that can be applied in real industrial processes by forming a graphene oxide thin film on a substrate, performing the primary chemical reduction using a reducing agent, and performing further the secondary thermal reduction and nitrogen doping by injecting hydrogen and ammonia gas through chemical vapor deposition equipment.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: May 13, 2014
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Sang Ouk Kim, Jin Ok Hwang, Duck Hyun Lee
  • Patent number: 8486613
    Abstract: According to an example embodiment of the present invention, a photoresist pattern is formed on a base substrate including a neutral layer. A sacrifice structure including a first sacrifice block and a second sacrifice block is formed on the base substrate having the photoresist pattern, and the sacrifice structure is formed from a first thin film including a first block copolymer. Thus, a chemical pattern is formed to form a nano-structure. Therefore, the nano-structure may be easily formed on a substrate having a large size by using a block copolymer, and productivity and manufacturing reliability may be improved.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: July 16, 2013
    Assignees: Samsung Electronics Co., Ltd., Korea Advanced Institute of Science and Technology
    Inventors: Sang-Ouk Kim, Seong-Jun Jeong, Su-Mi Lee, Bong-Hoon Kim, Ji-Eun Kim, Jae-Ho You, Moon-Gyu Lee, Seung-Ho Nam
  • Patent number: 8449791
    Abstract: The present invention relates to a graphene composition having liquid crystalline properties and a preparation method thereof, and more particularly to a graphene composition wherein graphene having useful electrical properties is uniformly dispersed in a medium, whereby it is chemically and physically stable, exhibits a liquid crystal phase in a wide temperature range and has good compatibility with other compounds, and to a preparation method thereof. In the graphene composition, liquid crystalline properties are imparted to graphene, which can be produced in large amounts and has excellent mechanical, chemical and electrical properties, and thus the graphene composition can provide a chance to apply functional carbon materials in various fields, including nanocomposites, energy storage materials, and photonics.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: May 28, 2013
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Sang Ouk Kim, Ji Eun Kim, Tae Hee Han, Sun Hwa Lee, Ju Young Kim
  • Publication number: 20130089735
    Abstract: A method for manufacturing an inorganic-nano structure composite, a method for manufacturing a cabon nanotube composite by using the same, and a carbon nanotube composite manufactured by the same are provided. The method for manufacturing the inorganic-nano structure composite comprises a step of doping pentavalent elements on the nanostructure; and a step of growing the inorganic material from the doping points of the pentavalent elements by dipping the nanostructure on which the pentavalent elements are doped into a precursor solution of the inorganic material, and according to the present invention the pentavalent elements such as nitrogen are doped on the nanostructure and is utilized as the crystallization point of the inorganic material, instead of forming the separate coating layer to the organic-based nanostructure, or binding the binding group to the surface.
    Type: Application
    Filed: November 29, 2011
    Publication date: April 11, 2013
    Applicant: KAIST (Korea Advanced Insitute of Science and Tech
    Inventors: Sang-Ouk Kim, Won-jun Lee, Duck-hyun Lee, Jin-ah Lee
  • Patent number: 8399174
    Abstract: A method of patterning a substrate includes processing first regions of the substrate to form a first pattern, the first regions defining a second region between adjacent first regions, arranging a block copolymer on the first and second regions, the block copolymer including a first component and a second component, the first component of the block copolymer being aligned on the first regions, and selectively removing one of the first component and the second component of the block copolymer to form a second pattern having a pitch that is less than a pitch of a first region and an adjacent second region.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: March 19, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyoung Taek Kim, Hyun Woo Kim, Sang Ouk Kim, Shi Yong Yi, Seong Woon Choi
  • Publication number: 20120267602
    Abstract: Provided is a method for controlling a device using a doped carbon-nanostructure, and a device including the doped carbon-nanostructure, in which the method for controlling the device selectively controls the mobility of electrons or holes using N-type or P-type doped carbon-nanostructure; the N-type or P-type impurities-doped carbon-nanostructure can selectively control the transport of electrons or holes according to a doped material; and also since the doped carbon-nanostructure limits the transport of charge that is the opposite charge to the transport facilitating charge, it can improve the efficiency of device by adding to a functional layer of device or using as a separate layer in the electrons or holes-only transporting device.
    Type: Application
    Filed: November 16, 2011
    Publication date: October 25, 2012
    Applicant: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Sang Ouk Kim, Ji Sun Park, Ju Min Lee, Myoung Hoon Song
  • Patent number: 8273668
    Abstract: Methods of forming a pattern and methods of fabricating a semiconductor device having a pattern are provided, the methods include forming a self-assembly induction layer including a first region and a second region on a semiconductor substrate. A block copolymer layer is coated on the self-assembly induction layer. A first pattern, a second pattern and a third pattern are formed by phase separating the block copolymer. At least one of the first, second and third patterns may be removed to form a preliminary pattern. An etching process may be performed using the preliminary pattern as an etching mask. The first pattern contains the same material as that of the second pattern, and the third pattern contains a material different from that of the first pattern.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: September 25, 2012
    Assignees: Samsung Electronics Co., Ltd., Korea Advanced Institute of Science and Technology
    Inventors: Dong Ki Yoon, Shiyong Yi, Kyoungseon Kim, Seongwoon Choi, Seokhwan Oh, Sang Ouk Kim, Seung Hak Park
  • Patent number: 8263323
    Abstract: A method of forming a fine pattern includes forming an organic guide layer on a substrate, forming a photoresist pattern on the organic guide layer, the photoresist pattern including a plurality of openings exposing portions of the organic guide layer, forming a material layer on the exposed portions of the organic guide layer and on the photoresist pattern, the material layer including block copolymers, and rearranging the material layer through phase separation of the block copolymers into a fine pattern layer, such that the fine pattern layer includes a plurality of first blocks and a plurality of second blocks arranged in an alternating pattern, the plurality of first blocks and the plurality of the second blocks having different repeating units of the block copolymers.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: September 11, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong Ki Yoon, Shi-yong Yi, Seok-hwan Oh, Kyoung-seon Kim, Sang Ouk Kim, Seung-hak Park
  • Patent number: 8211588
    Abstract: A sulfonated poly(arylene sulfone) contains an unsaturated bond. A cross-linked material may be formed from the sulfonated poly(arylene sulfone), and a clay nanocomposite may include the sulfonated poly(arylene sulfone) or the cross-linked material. A fuel cell includes the clay nanocomposite.
    Type: Grant
    Filed: January 4, 2010
    Date of Patent: July 3, 2012
    Assignees: Samsung Electronics Co., Ltd., Korea Advanced Institute of Science and Technology
    Inventors: Yeong-suk Choi, Sang-ouk Kim, Sun-hwa Lee, Won-jun Lee
  • Publication number: 20120161192
    Abstract: Provided is a transparent graphene film which is prepared by maintaining the primary reduced state of a graphene oxide thin film via chemical reduction, reducing the graphene oxide thin film with chemical vapor deposition, and doping nitrogen, thereby enhancing the conductivity and enabling the control of work function and a manufacturing method thereof. According to the present disclosure, a flexible, transparent, electrical conductivity-enhanced, and work function controllable graphene film can be large area processed and produced in large quantities so that can be applied in real industrial processes by forming a graphene oxide thin film on a substrate, performing the primary chemical reduction using a reducing agent, and performing further the secondary thermal reduction and nitrogen doping by injecting hydrogen and ammonia gas through chemical vapor deposition equipment.
    Type: Application
    Filed: November 16, 2011
    Publication date: June 28, 2012
    Applicant: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Sang Ouk Kim, Jin Ok Hwang, Duck Hyun Lee
  • Publication number: 20120133247
    Abstract: There are provided a flexible nanocomposite generator and a method of manufacturing the same. A flexible nanocomposite generator according to the present invention includes a piezoelectric layer formed of a flexible matrix containing piezoelectric nanoparticles and carbon nanostructures; and electrode layers disposed on the upper and lower surfaces of both sides of the piezoelectric layer, in which according to a method for manufacturing a flexible nanocomposite generator according to the present invention and a flexible nanogenerator, it is possible to manufacture a flexible nanogenerator with a large area and a small thickness. Therefore, the nanogenerator may be used as a portion of a fiber or cloth. Accordingly, the nanogenerator according to the present invention generates power in accordance with bending of attached cloth, such that it is possible to continuously generate power in accordance with movement of a human body.
    Type: Application
    Filed: November 30, 2011
    Publication date: May 31, 2012
    Inventors: Keon Jae Lee, Kwi-Il Park, Do Kyung Kim, Sang Ouk Kim, Geon-Tae Hwang
  • Publication number: 20120121891
    Abstract: The present invention relates to a 3-dimensional nanostructure having nanomaterials stacked on a graphene substrate; and more specifically, to a 3-dimensional nanostructure having at least one nanomaterial selected from nanotubes, nanowires, nanorods, nanoneedles and nanoparticles grown on a reduced graphene substrate. The present invention enables the achievement of a synergy effect of the 3-dimensional nanostructure hybridizing 1-dimensional nanomaterials and 2-dimensional graphene. The nanostructure according to the present invention is excellent in flexibility and elasticity, and can easily be transferred to any substrate having a non-planar surface. Also, all junctions in nanomaterials, a metal catalyst and a graphene film system form the ohmic electrical contact, which allows the nanostructure to easily be incorporated into a field-emitting device.
    Type: Application
    Filed: September 20, 2010
    Publication date: May 17, 2012
    Inventors: Sang Ouk Kim, Won Jong Lee, Duck Hyun Lee, Tae Hee Han, Ji Eun Kim, Jin Ah Lee, Keon Jae Lee
  • Publication number: 20120003587
    Abstract: A method of patterning a substrate includes processing first regions of the substrate to form a first pattern, the first regions defining a second region between adjacent first regions, arranging a block copolymer on the first and second regions, the block copolymer including a first component and a second component, the first component of the block copolymer being aligned on the first regions, and selectively removing one of the first component and the second component of the block copolymer to form a second pattern having a pitch that is less than a pitch of a first region and an adjacent second region.
    Type: Application
    Filed: September 20, 2011
    Publication date: January 5, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD
    Inventors: Kyoung Taek KIM, Hyun Woo KIM, Sang Ouk KIM, Shi Yong YI, Seong Woon CHOI