Patents by Inventor Satoru Nogami

Satoru Nogami has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9725822
    Abstract: Provided is a feed material for epitaxial growth of a monocrystalline silicon carbide capable of increasing the rate of epitaxial growth of silicon carbide. A feed material 11 for epitaxial growth of a monocrystalline silicon carbide includes a surface layer containing a polycrystalline silicon carbide with a 3C crystal polymorph. Upon X-ray diffraction of the surface layer, a diffraction peak corresponding to a (111) crystal plane and a diffraction peak other than the diffraction peak corresponding to the (111) crystal plane are observed as diffraction peaks corresponding to the polycrystalline silicon carbide with a 3C crystal polymorph.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: August 8, 2017
    Assignee: TOYO TANSO CO., LTD.
    Inventors: Satoshi Torimi, Satoru Nogami, Tsuyoshi Matsumoto
  • Patent number: 9704733
    Abstract: The present invention is to provide a storing container wherein Si does not drop onto a single crystal SiC substrate, and Si pressure distribution in an internal space can be made uniform. This storing container stores therein a single crystal SiC substrate to be etched by means of a heat treatment under Si vapor pressure. The storing container is formed of a tantalum metal, and has a tantalum carbide layer provided on an internal space side, and a tantalum silicide layer provided on the side further toward the internal space side than the tantalum carbide layer. The tantalum silicide layer supplies Si to the internal space. Furthermore, the tantalum silicide layer is different from adhered Si, and does not melt and drop.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: July 11, 2017
    Assignee: TOYO TANSO CO., LTD.
    Inventors: Satoshi Torimi, Norihito Yabuki, Satoru Nogami
  • Publication number: 20170162425
    Abstract: Provided are a susceptor that, in forming a thin film on a wafer, can reduce impurities or the like adhering to the wafer and a method for manufacturing the same. A susceptor includes a base material (10) with a recess (11), a tantalum carbide layer (22) formed directly on a bottom surface (11a) and a side surface (11b) of the recess (11), and a silicon carbide layer (20) formed on a surface of the base material (10) except for the recess (11).
    Type: Application
    Filed: June 1, 2015
    Publication date: June 8, 2017
    Applicant: TOYO TANSO CO., LTD.
    Inventors: Masato Shinohara, Yoshihisa Abe, Satoru Nogami
  • Patent number: 9644894
    Abstract: Provided is a heat treatment container having a small size and capable of efficiently performing a heat treatment on a SiC substrate. A heat treatment container is a container for a heat treatment on a SiC substrate 40 under Si vapor pressure. The SiC substrate 40 is made of, at least in a surface thereof, single crystal SiC. The heat treatment container includes a container part 30 and a substrate holder 50. The container part 30 includes an internal space 33 in which Si vapor pressure is caused. The internal space 33 is partially open. The substrate holder 50 is able to support the SiC substrate 40. When the substrate holder 50 supports the SiC substrate 40, an open portion of the container part 30 is covered so that the internal space 33 is hermetically sealed.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: May 9, 2017
    Assignee: TOYO TANSO CO., LTD.
    Inventors: Satoshi Torimi, Norihito Yabuki, Satoru Nogami
  • Publication number: 20170121848
    Abstract: When a SiC substrate (40) after performing mechanical treatment is heat-treated under SiC atmosphere to etch the SiC substrate (40), the etching rate is controlled by adjusting the inert gas pressure around the periphery of the SiC substrate (40). As a result, when latent scratches or the like exist in the SiC substrate (40), the latent scratches or the like can be removed. Accordingly, the surface of the SiC substrate (40) does not become rough, even if epitaxial growth and heat treatment and the like are performed. This can manufacture high-quality SiC substrates.
    Type: Application
    Filed: March 10, 2015
    Publication date: May 4, 2017
    Applicant: TOYO TANSO CO., LTD.
    Inventors: Satoshi Torimi, Norihito Yabuki, Satoru Nogami
  • Publication number: 20170114475
    Abstract: Provided is a method in which the rate of growth is lowered even when a cut SiC seed crystal is used in performing MSE process. A SiC seed crystal that is used as a seed crystal in metastable solvent epitaxy process (MSE process) is heated under Si atmosphere and the surface of the SiC seed crystal is etched to remove a work-affected layer that was formed by cutting. Work-affected layers generated on SiC seed crystals are known to inhibit growth during MSE process, and therefore removing the work-affected layers can prevent lowering of the rate of growth.
    Type: Application
    Filed: March 10, 2015
    Publication date: April 27, 2017
    Applicant: TOYO TANSO CO., LTD.
    Inventors: Norihito Yabuki, Satoshi Torimi, Satoru Nogami
  • Publication number: 20170110378
    Abstract: This method for estimating the depth of latent scratches in SiC substrates includes an etching step, a measurement step, and an estimation step. In the etching step, a SiC substrate in which at least the surface is formed from single crystal SiC, and which has been subjected to machining, is subjected to heat treatment under Si atmosphere to etch the surface of the SiC substrate. In the measurement step, the surface roughness or the residual stress of the SiC substrate which has been subjected to the etching step is measured. In the estimation step, the depth of latent scratches or the presence or absence of latent scratches in the SiC substrate before the etching step are estimated on the basis of the results obtained in the measurement step.
    Type: Application
    Filed: October 3, 2015
    Publication date: April 20, 2017
    Applicant: Toyo Tanso Co., Ltd.
    Inventors: Satoshi Torimi, Norihito Yabuki, Satoru Nogami
  • Patent number: 9570306
    Abstract: The present application aims to provide a surface treatment method that is able to accurately control the rate of etching a single crystal SiC substrate and thereby enables correct understanding of the amount of etching. In the surface treatment method, the single crystal SiC substrate is etched by a heat treatment performed under Si vapor pressure. At a time of the etching, inert gas pressure in an atmosphere around the single crystal SiC substrate is adjusted to control the rate of etching. Accordingly, correct understanding of the amount of etching is obtained.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: February 14, 2017
    Assignee: TOYO TANSO CO., LTD.
    Inventors: Satoshi Torimi, Norihito Yabuki, Satoru Nogami
  • Patent number: 9477875
    Abstract: A cell monitoring device includes an outline detecting section that detects edge pixels from a cell image in a captured image of cells arranged in a single layer and generates an edge image including the detected edge pixels; a pigmented region detecting section that detects pixels of a pigmented region of the cell image in the captured image, and generates a pigmented region image including the detected pixels of the pigmented region; and an image merging section that, in a merged image obtained by overlaying the edge image and the pigmented region image together, detects a cell image region and a background image region in the captured image based on the pixel intensity variance and thus detects the cell image region in the captured image.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: October 25, 2016
    Assignee: Japan Science and Technology Agency
    Inventors: Yoshikazu Ohya, Shigeyuki Kawano, Satoru Nogami, Shinsuke Ohnuki, Shuhei Ota, Koichi Watanabe
  • Patent number: 9447517
    Abstract: Provided is an inexpensive seed material for liquid phase epitaxial growth of silicon carbide. A seed material 12 for liquid phase epitaxial growth of a monocrystalline silicon carbide includes a surface layer containing a polycrystalline silicon carbide with a 3C crystal polymorph. Upon Raman spectroscopic analysis of the surface layer with an excitation wavelength of 532 nm, a peak other than a TO peak and an LO peak is observed as a peak derived from the polycrystalline silicon carbide with a 3C crystal polymorph.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: September 20, 2016
    Assignee: TOYO TANSO CO., LTD.
    Inventors: Satoshi Torimi, Satoru Nogami, Tsuyoshi Matsumoto
  • Patent number: 9252206
    Abstract: The cost of liquid phase epitaxial growth of a monocrystalline silicon carbide is reduced. A feed material 11 is such that when a surface layer thereof containing a polycrystalline silicon carbide with a 3C crystal polymorph is subjected to X-ray diffraction, a diffraction peak corresponding to a (111) crystal plane and a diffraction peak other than the diffraction peak corresponding to the (111) crystal plane are observed as diffraction peaks corresponding to the polycrystalline silicon carbide with a 3C crystal polymorph.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: February 2, 2016
    Assignee: TOYO TANSO CO., LTD.
    Inventors: Satoshi Torimi, Satoru Nogami, Tsuyoshi Matsumoto
  • Publication number: 20150302237
    Abstract: A cell monitoring device includes an outline detecting section that detects edge pixels from a cell image in a captured image of cells arranged in a single layer and generates an edge image including the detected edge pixels; a pigmented region detecting section that detects pixels of a pigmented region of the cell image in the captured image, and generates a pigmented region image including the detected pixels of the pigmented region; and an image merging section that, in a merged image obtained by overlaying the edge image and the pigmented region image together, detects a cell image region and a background image region in the captured image based on the pixel intensity variance and thus detects the cell image region in the captured image.
    Type: Application
    Filed: November 27, 2013
    Publication date: October 22, 2015
    Applicant: Japan Science and Technology Agency
    Inventors: Yoshikazu OHYA, Shigeyuki KAWANO, Satoru NOGAMI, Shinsuke OHNUKI, Shuhei OTA, Koichi WATANABE
  • Publication number: 20150294867
    Abstract: The present application aims to provide a surface treatment method that is able to accurately control the rate of etching a single crystal SiC substrate and thereby enables correct understanding of the amount of etching. In the surface treatment method, the single crystal SiC substrate is etched by a heat treatment performed under Si vapor pressure. At a time of the etching, inert gas pressure in an atmosphere around the single crystal SiC substrate is adjusted to control the rate of etching. Accordingly, correct understanding of the amount of etching is obtained.
    Type: Application
    Filed: November 15, 2013
    Publication date: October 15, 2015
    Applicant: TOYO TANSO CO., LTD.
    Inventors: Satoshi Torimi, Norihito Yabuki, Satoru Nogami
  • Publication number: 20150255314
    Abstract: The present invention is to provide a storing container wherein Si does not drop onto a single crystal SiC substrate, and Si pressure distribution in an internal space can be made uniform. This storing container stores therein a single crystal SiC substrate to be etched by means of a heat treatment under Si vapor pressure. The storing container is formed of a tantalum metal, and has a tantalum carbide layer provided on an internal space side, and a tantalum silicide layer provided on the side further toward the internal space side than the tantalum carbide layer. The tantalum silicide layer supplies Si to the internal space. Furthermore, the tantalum silicide layer is different from adhered Si, and does not melt and drop.
    Type: Application
    Filed: November 15, 2013
    Publication date: September 10, 2015
    Applicant: TOYO TANSO CO., LTD.
    Inventors: Satoshi Torimi, Norihito Yabuki, Satoru Nogami
  • Publication number: 20150249025
    Abstract: Provided is a heat treatment container having a small size and capable of efficiently performing a heat treatment on a SiC substrate. A heat treatment container is a container for a heat treatment on a SiC substrate 40 under Si vapor pressure. The SiC substrate 40 is made of, at least in a surface thereof, single crystal SiC. The heat treatment container includes a container part 30 and a substrate holder 50. The container part 30 includes an internal space 33 in which Si vapor pressure is caused. The internal space 33 is partially open. The substrate holder 50 is able to support the SiC substrate 40. When the substrate holder 50 supports the SiC substrate 40, an open portion of the container part 30 is covered so that the internal space 33 is hermetically sealed.
    Type: Application
    Filed: August 26, 2014
    Publication date: September 3, 2015
    Applicant: TOYO TANSO CO., LTD.
    Inventors: Satoshi Torimi, Norihito Yabuki, Satoru Nogami
  • Patent number: 9029219
    Abstract: A method for manufacturing a semiconductor wafer includes a carbon layer formation step, a through hole formation step, a feed layer formation step, and an epitaxial layer formation step. In the carbon layer formation step, a carbon layer (71) is formed on a surface of a substrate (70) made of polycrystalline SiC. In the through hole formation step, through holes (71c) are formed in the carbon layer (71) formed on the substrate (70). In the feed layer formation step, a Si layer (72) and a 3C—SiC polycrystalline layer (73) are formed on a surface of the carbon layer (71). In the epitaxial layer formation step, the substrate (70) is heated so that a seed crystal made of 4H—SiC single crystal is formed on portions of the surface of the substrate (70) that are exposed through the through holes (71c), and a close-spaced liquid-phase epitaxial growth of the seed crystal is caused to form a 4H—SiC single crystal layer.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: May 12, 2015
    Assignees: Kwansei Gakuin Educational Foundation, Toyo Tanso Co., Ltd.
    Inventors: Tadaaki Kaneko, Noboru Ohtani, Shoji Ushio, Ayumu Adachi, Satoru Nogami
  • Publication number: 20140319539
    Abstract: A method for manufacturing a semiconductor wafer includes a carbon layer formation step, a through hole formation step, a feed layer formation step, and an epitaxial layer formation step. In the carbon layer formation step, a carbon layer (71) is formed on a surface of a substrate (70) made of polycrystalline SiC. In the through hole formation step, through holes (71c) are formed in the carbon layer (71) formed on the substrate (70). In the feed layer formation step, a Si layer (72) and a 3C—SiC polycrystalline layer (73) are formed on a surface of the carbon layer (71). In the epitaxial layer formation step, the substrate (70) is heated so that a seed crystal made of 4H—SiC single crystal is formed on portions of the surface of the substrate (70) that are exposed through the through holes (71c), and a close-spaced liquid-phase epitaxial growth of the seed crystal is caused to form a 4H—SiC single crystal layer.
    Type: Application
    Filed: August 24, 2012
    Publication date: October 30, 2014
    Applicants: TOYO TANSO CO., LTD., KWANSEI GAKUIN EDUCATIONAL FOUNDATION
    Inventors: Tadaaki Kaneko, Noboru Ohtani, Shoji Ushio, Ayumu Adachi, Satoru Nogami
  • Patent number: 8763911
    Abstract: An RFID tag is disclosed that includes a first sheet having flexibility and elasticity; an antenna having flexibility and elasticity and configured to be formed on a surface of the first sheet; an IC chip configured to be electrically connected to the antenna; a second sheet having flexibility and elasticity and configured to be attached to the first sheet and to cover the antenna and the IC chip with the first sheet; and a reinforcing member having flexibility and elasticity and configured to cover the IC chip and a connecting portion of the IC chip and the antenna.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: July 1, 2014
    Assignees: Fujitsu Limited, Fujitsu Frontech Limited
    Inventors: Shunji Baba, Naoki Ishikawa, Shigeru Hashimoto, Tsuyoshi Niwata, Yoshiyasu Sugimura, Satoru Nogami, Mimpei Miura
  • Publication number: 20130285060
    Abstract: The cost of liquid phase epitaxial growth of a monocrystalline silicon carbide is reduced. A feed material 11 is such that when a surface layer thereof containing a polycrystalline silicon carbide with a 3C crystal polymorph is subjected to X-ray diffraction, a diffraction peak corresponding to a (111) crystal plane and a diffraction peak other than the diffraction peak corresponding to the (111) crystal plane are observed as diffraction peaks corresponding to the polycrystalline silicon carbide with a 3C crystal polymorph.
    Type: Application
    Filed: June 29, 2011
    Publication date: October 31, 2013
    Applicant: TOYO TANSO CO., LTD.
    Inventors: Satoshi Torimi, Satoru Nogami, Tsuyoshi Matsumoto
  • Publication number: 20130269596
    Abstract: Provided is a feed material for epitaxial growth of a monocrystalline silicon carbide capable of increasing the rate of epitaxial growth of silicon carbide. A feed material 11 for epitaxial growth of a monocrystalline silicon carbide includes a surface layer containing a polycrystalline silicon carbide with a 3C crystal polymorph. Upon X-ray diffraction of the surface layer, a diffraction peak corresponding to a (111) crystal plane and a diffraction peak other than the diffraction peak corresponding to the (111) crystal plane are observed as diffraction peaks corresponding to the polycrystalline silicon carbide with a 3C crystal polymorph.
    Type: Application
    Filed: June 29, 2011
    Publication date: October 17, 2013
    Applicant: TOYO TANSO CO., LTD.
    Inventors: Satoshi Torimi, Satoru Nogami, Tsuyoshi Matsumoto