Patents by Inventor Scott Corzine

Scott Corzine has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6870195
    Abstract: An optical signal emitter for a multi-channel, wavelength division multiplexed (WDM) optical communication system is disclosed. This optical signal emitter does not require an optical multiplexer, or other device, to combine components of an optical signal. Semiconductor die attached to a substrate emit independent components of a multi-channel optical signal from emission apertures that are positioned offset from the center of the die toward an aperture corner of the die. This aperture corner may be shaped so that the apertures can be located closer to each other. The shaping of the die may include a photolithographic process, an etching process, a reactive ion etching process, or a combination thereof.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: March 22, 2005
    Assignee: Agilent Technologies, Inc.
    Inventors: Brian E. Lemoff, Lisa A. Windover, Scott A. Corzine
  • Patent number: 6804271
    Abstract: Light emission methods and light emission devices are described including method and devices capable of emitting light at a plurality of controllable wavelengths. According to one aspect, a light emission method includes providing a control signal and emitting light using a laser operating in a plurality of polarization states. The polarization state of the laser is adjusted responsive to the control signal and the wavelength of the light emitted using the laser is adjusted responsive to the adjustment of the polarization state of the laser.
    Type: Grant
    Filed: November 6, 2001
    Date of Patent: October 12, 2004
    Assignee: Agilent Technologies, Inc.
    Inventors: Ken Nishimura, Scott Corzine, Frank H. Peters, Gary Gordon
  • Patent number: 6756325
    Abstract: Several methods for producing an active region for a long wavelength light emitting device are disclosed. In one embodiment, the method comprises placing a substrate in an organometallic vapor phase epitaxy (OMVPE) reactor, the substrate for supporting growth of an indium gallium arsenide nitride (InGaAsN) film, supplying to the reactor a group-III-V precursor mixture comprising arsine, dimethylhydrazine, alkyl-gallium, alkyl-indium and a carrier gas, where the arsine and the dimethylhydrazine are the group-V precursor materials and where the percentage of dimethylhydrazine substantially exceeds the percentage of arsine, and pressurizing the reactor to a pressure at which a concentration of nitrogen commensurate with light emission at a wavelength longer than 1.2 um is extracted from the dimethylhydrazine and deposited on the substrate.
    Type: Grant
    Filed: May 7, 2002
    Date of Patent: June 29, 2004
    Assignee: Agilent Technologies, Inc.
    Inventors: David P. Bour, Tetsuya Takeuchi, Ashish Tandon, Ying-Lan Chang, Michael R. T. Tan, Scott Corzine
  • Publication number: 20040037341
    Abstract: A light source that includes first and second waveguides and a passive resonator for coupling light between the waveguides. The waveguides include a gain region for amplifying light of a desired wavelength, a transparent region, and an absorption region. The passive resonator couples light of the desired wavelength between the first and second transparent regions of the first and second waveguides and has a resonance at that wavelength. The resonator is preferably a microdisk resonator. The index of refraction of the microdisk resonator can be altered to select the desired wavelength. A second microdisk resonator having a different radius may be incorporated to increase the tuning range of the light source. The resonator is preferably constructed over the waveguides with an air gap between the resonator and the substrate in which the waveguides are constructed.
    Type: Application
    Filed: August 21, 2002
    Publication date: February 26, 2004
    Inventors: Michael R. Tan, Scott Corzine, Chao-Kun Lin
  • Publication number: 20030235415
    Abstract: Optical communication devices and optical communication methods are described. The devices and methods may be implemented in parallel optical communication applications according to some exemplary described aspects to provide enhanced bandwidth. According to one aspect, an exemplary optical communication device includes a plurality of light sources configured in an array and individually adapted to communicate information with respect to an optical communication medium. Individual ones of the light sources are configured to emit light having at least three different and distinct levels to communicate the information with respect to the optical communication medium. The device of this aspect further includes a controller configured to provide a plurality of control signals to control respective ones of the light sources to individually communicate respective information using the at least three different and distinct levels to implement multi-level coding. Other aspects are described.
    Type: Application
    Filed: June 21, 2002
    Publication date: December 25, 2003
    Inventors: Frank H. Peters, Jonathan Simon, Scott Corzine, Clifton L. Anderson
  • Publication number: 20030211647
    Abstract: Several methods for producing an active region for a long wavelength light emitting device are disclosed. In one embodiment, the method comprises placing a substrate in an organometallic vapor phase epitaxy (OMVPE) reactor, the substrate for supporting growth of an indium gallium arsenide nitride (InGaAsN) film, supplying to the reactor a group-III-V precursor mixture comprising arsine, dimethylhydrazine, alkyl-gallium, alkyl-indium and a carrier gas, where the arsine and the dimethylhydrazine are the group-V precursor materials and where the percentage of dimethylhydrazine substantially exceeds the percentage of arsine, and pressurizing the reactor to a pressure at which a concentration of nitrogen commensurate with light emission at a wavelength longer than 1.2 um is extracted from the dimethylhydrazine and deposited on the substrate.
    Type: Application
    Filed: May 7, 2002
    Publication date: November 13, 2003
    Inventors: David P. Bour, Tetsuya Takeuchi, Ashish Tandon, Ying-Lan Chang, Michael R.T. Tan, Scott Corzine
  • Publication number: 20030086450
    Abstract: Light emission methods and light emission devices are described including methods and devices capable of emitting light at a plurality of controllable wavelengths. According to one aspect, a light emission method includes providing a control signal and emitting light using a laser operating in a plurality of polarization states. The polarization state of the laser is adjusted responsive to the control signal and the wavelength of the light emitted using the laser is adjusted responsive to the adjustment of the polarization state of the laser.
    Type: Application
    Filed: November 6, 2001
    Publication date: May 8, 2003
    Inventors: Ken Nishimura, Scott Corzine, Frank H. Peters, Gary Gordon
  • Publication number: 20030076566
    Abstract: The invention relates to optical communication devices, light emission devices and optical communication methods. Aspects of the present invention provide methods and devices enable provision of modulated output optical signals without providing modulation of total photon populations of cavities of associated lasers. Such avoids or minimizes bandwidth restrictions associated with conventional methods or devices which modulate total photon populations within cavities of lasers. One aspect of the invention includes an optical communication method including providing a data signal comprising data to be communicated and emitting light using a laser. The method further includes modulating the laser across a lasing mode transition responsive to the data signal. The emitting further includes emitting the light during a plurality of lasing modes of the laser to communicate the data responsive to the modulating.
    Type: Application
    Filed: October 23, 2001
    Publication date: April 24, 2003
    Inventors: Jonathan Simon, Scott Corzine