Patents by Inventor See-Eng Phan

See-Eng Phan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110086509
    Abstract: Embodiments of the invention generally provide methods for forming cobalt silicide. In one embodiment, a method for forming a cobalt silicide material includes exposing a substrate having a silicon-containing material to either a wet etch solution or a pre-clean plasma during a first step and then to a hydrogen plasma during a second step of a pre-clean process. The method further includes depositing a cobalt metal layer on the silicon-containing material by a CVD process, heating the substrate to form a first cobalt silicide layer comprising CoSi at the interface of the cobalt metal layer and the silicon-containing material during a first annealing process, removing any unreacted cobalt metal from the substrate during an etch process, and heating the substrate to form a second cobalt silicide layer comprising CoSi2 during a second annealing process.
    Type: Application
    Filed: December 15, 2010
    Publication date: April 14, 2011
    Inventors: SESHADRI GANGULI, Sang-Ho Yu, See-Eng Phan, Mei Chang, Amit Khandelwal, Hyoung-Chan Ha
  • Patent number: 7767024
    Abstract: In one embodiment, a method for removing native oxides from a substrate surface is provided which includes supporting a substrate containing silicon oxide within a processing chamber, generating a plasma of reactive species from a gas mixture within the processing chamber, cooling the substrate to a first temperature of less than about 65° C. within the processing chamber, and directing the reactive species to the cooled substrate to react with the silicon oxide thereon while forming a film on the substrate. The film usually contains ammonium hexafluorosilicate. The method further provides positioning the substrate in close proximity to a gas distribution plate, and heating the substrate to a second temperature of about 100° C. or greater within the processing chamber to sublimate or remove the film. The gas mixture may contain ammonia, nitrogen trifluoride, and a carrier gas.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: August 3, 2010
    Assignee: Appplied Materials, Inc.
    Inventors: Chien-Teh Kao, Jing-Pei (Connie) Chou, Chiukin (Steven) Lai, Sal Umotoy, Joel M. Huston, Son Trinh, Mei Chang, Xiaoxiong (John) Yuan, Yu Chang, Xinliang Lu, Wei W. Wang, See-Eng Phan
  • Publication number: 20090269507
    Abstract: Embodiments of the invention provide processes to selectively form a cobalt layer on a copper surface over exposed dielectric surfaces. In one embodiment, a method for capping a copper surface on a substrate is provided which includes positioning a substrate within a processing chamber, wherein the substrate contains a contaminated copper surface and a dielectric surface, exposing the contaminated copper surface to a reducing agent while forming a copper surface during a pre-treatment process, exposing the substrate to a cobalt precursor gas to selectively form a cobalt capping layer over the copper surface while leaving exposed the dielectric surface during a vapor deposition process, and depositing a dielectric barrier layer over the cobalt capping layer and the dielectric surface.
    Type: Application
    Filed: April 29, 2008
    Publication date: October 29, 2009
    Inventors: Sang-Ho Yu, Kevin Moraes, Seshadri Ganguli, Hua Chung, See-Eng Phan
  • Publication number: 20090111280
    Abstract: A method for removing native oxides from a substrate surface is provided. In one embodiment, the method comprises positioning a substrate having an oxide layer into a processing chamber, generating a plasma of a reactive species from a gas mixture within the processing chamber, exposing the substrate to the reactive species while forming a volatile film on the substrate and maintaining the substrate at a temperature below 65° C., heating the substrate to a temperature of at least about 75° C. to vaporize the volatile film and remove the oxide layer, and depositing a first layer on the substrate after heating the substrate.
    Type: Application
    Filed: December 4, 2008
    Publication date: April 30, 2009
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Chien-Teh Kao, Jing-Pei (Connie) Chou, Chiukin (Steven) Lai, Sal Umotoy, Joel M. Huston, Son Trinh, Mei Chang, Xiaoxiong (John) Yuan, Yu Chang, Xinliang Lu, Wei W. Wang, See-Eng Phan
  • Patent number: 7520957
    Abstract: A lid assembly for semiconductor processing is provided. In at least one embodiment, the lid assembly includes a first electrode comprising an expanding section that has a gradually increasing inner diameter. The lid assembly also includes a second electrode disposed opposite the first electrode. A plasma cavity is defined between the inner diameter of the expanding section of the first electrode and a first surface of the second electrode.
    Type: Grant
    Filed: May 24, 2005
    Date of Patent: April 21, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Chien-Teh Kao, Jing-Pei (Connie) Chou, Chiukin (Steven) Lai, Sal Umotoy, Joel M. Huston, Son Trinh, Mei Chang, Xiaoxiong (John) Yuan, Yu Chang, Xinliang Lu, Wei W. Wang, See-Eng Phan
  • Patent number: 7513971
    Abstract: An RF coil for a plasma etch chamber is provided in which the RF coil is substantially flat over a portion of at least one turn of the coil. In one embodiment, each turn of the coil is substantially flat over a majority of each turn. In one embodiment of the present inventions, each turn of the coil is substantially flat over approximately 300 degrees of the turn. In the final approximate 60 degrees of the turn, the coil is sloped down to the next turn. Each turn thus comprises a substantially flat portion in combination with a sloped portion interconnecting the turn to the next adjacent turn. In one embodiment, the RF coil having turns with substantially flat portions is generally cylindrical. Other shapes are contemplated such as a dome shape. In some applications such as an RF plasma etch reactor, it is believed that providing an RF coil having turns comprising flat portions with sloped portions interconnecting the flat portions can improve uniformity of the etch process.
    Type: Grant
    Filed: March 12, 2003
    Date of Patent: April 7, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Karl Brown, Vineet Mehta, See-Eng Phan
  • Patent number: 7494545
    Abstract: An epitaxial deposition process including a dry etch process, followed by an epitaxial deposition process is disclosed. The dry etch process involves placing a substrate to be cleaned into a processing chamber to remove surface oxides. A gas mixture is introduced into a plasma cavity, and the gas mixture is energized to form a plasma of reactive gas in the plasma cavity. The reactive gas enters into the processing chamber and reacts with the substrate, forming a thin film. The substrate is heated to vaporize the thin film and expose an epitaxy surface. The epitaxy surface is substantially free of oxides. Epitaxial deposition is then used to form an epitaxial layer on the epitaxy surface.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: February 24, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Andrew Lam, Yihwan Kim, Satheesh Kuppurao, See-Eng Phan, Xinliang Lu, Chien-Teh Kao
  • Publication number: 20090004850
    Abstract: Embodiments of the invention described herein generally provide methods for forming cobalt silicide layers and metallic cobalt layers by using various deposition processes and annealing processes. In one embodiment, a method for forming a metallic silicide containing material on a substrate is provided which includes forming a metallic silicide material over a silicon-containing surface during a vapor deposition process by sequentially depositing a plurality of metallic silicide layers and silyl layers on the substrate, depositing a metallic capping layer over the metallic silicide material, heating the substrate during an annealing process, and depositing a metallic contact material over the barrier material. In one example, the metallic silicide layers and the metallic capping layer both contain cobalt. The cobalt silicide material may contain a silicon/cobalt atomic ratio of about 1.9 or greater, such as greater than about 2.0, or about 2.2 or greater.
    Type: Application
    Filed: April 29, 2008
    Publication date: January 1, 2009
    Inventors: SESHADRI GANGULI, SANG-HO YU, See-Eng Phan, Mei Chang, Amit Khandelwal, Hyoung-Chan Ha
  • Publication number: 20080268645
    Abstract: In one embodiment, a method for removing native oxides from a substrate surface is provided which includes supporting a substrate containing silicon oxide within a processing chamber, generating a plasma of reactive species from a gas mixture within the processing chamber, cooling the substrate to a first temperature of less than about 65° C. within the processing chamber, and directing the reactive species to the cooled substrate to react with the silicon oxide thereon while forming a film on the substrate. The film usually contains ammonium hexafluorosilicate. The method further provides positioning the substrate in close proximity to a gas distribution plate, and heating the substrate to a second temperature of about 100° C. or greater within the processing chamber to sublimate or remove the film. The gas mixture may contain ammonia, nitrogen trifluoride, and a carrier gas.
    Type: Application
    Filed: June 6, 2008
    Publication date: October 30, 2008
    Inventors: CHIEN-TEH KAO, Jing-Pei (Connie) Chou, Chiukin (Steven) Lai, Sal Umotoy, Joel M. Huston, Son Trinh, Mei Chang, Xiaoxiong (John) Yuan, Yu Chang, Xinliang Lu, Wei W. Wang, See-Eng Phan
  • Publication number: 20080268635
    Abstract: Embodiments of the invention described herein generally provide methods for forming cobalt silicide layers and metallic cobalt layers by using various deposition processes and annealing processes. In one embodiment, a method for forming a cobalt silicide material on a substrate is provided which includes treating the substrate with at least one preclean process to expose a silicon-containing surface, depositing a cobalt silicide material over the silicon-containing surface, and depositing a copper material over the cobalt silicide material. In another embodiment, a metallic cobalt material may be deposited over the cobalt silicide material prior to depositing the copper material. In one example, the copper material may be formed by depositing a copper seed layer and a copper bulk layer on the substrate. The copper seed layer may be deposited by a PVD process and the copper bulk layer may be deposited by an ECP process or an electroless deposition process.
    Type: Application
    Filed: April 29, 2008
    Publication date: October 30, 2008
    Inventors: Sang-Ho Yu, Kevin Ti Moraes, Seshadri Ganguli, Hua Chung, See-Eng Phan, Amit Khandelwal, Kai Wu
  • Patent number: 7396480
    Abstract: A method for removing native oxides from a substrate surface is provided. In at least one embodiment, the method includes supporting the substrate surface in a vacuum chamber and generating reactive species from a gas mixture within the chamber. The substrate surface is then cooled within the chamber and the reactive species are directed to the cooled substrate surface to react with the native oxides thereon and form a film on the substrate surface. The substrate surface is then heated within the chamber to vaporize the film.
    Type: Grant
    Filed: May 24, 2005
    Date of Patent: July 8, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Chien-Teh Kao, Jing-Pei (Connie) Chou, Chiukin (Steven) Lai, Sal Umotoy, Joel M. Huston, Son Trinh, Mei Chang, Xiaoxiong (John) Yuan, Yu Chang, Xinliang Lu, Wei W. Wang, See-Eng Phan
  • Publication number: 20070202254
    Abstract: Embodiments of the invention described herein generally provide methods and apparatuses for forming cobalt silicide layers, metallic cobalt layers, and other cobalt-containing materials. In one embodiment, a method for forming a cobalt silicide containing material on a substrate is provided which includes exposing a substrate to at least one preclean process to expose a silicon-containing surface, depositing a cobalt silicide material on the silicon-containing surface, depositing a metallic cobalt material on the cobalt silicide material, and depositing a metallic contact material on the substrate. In another embodiment, a method includes exposing a substrate to at least one preclean process to expose a silicon-containing surface, depositing a cobalt silicide material on the silicon-containing surface, expose the substrate to an annealing process, depositing a barrier material on the cobalt silicide material, and depositing a metallic contact material on the barrier material.
    Type: Application
    Filed: April 11, 2007
    Publication date: August 30, 2007
    Inventors: SESHADRI GANGULI, SCHUBERT CHU, MEI CHANG, SANG-HO YU, KEVIN MORAES, SEE-ENG PHAN
  • Publication number: 20070181057
    Abstract: An epitaxial deposition process including a dry etch process, followed by an epitaxial deposition process is disclosed. The dry etch process involves placing a substrate to be cleaned into a processing chamber to remove surface oxides. A gas mixture is introduced into a plasma cavity, and the gas mixture is energized to form a plasma of reactive gas in the plasma cavity. The reactive gas enters into the processing chamber and reacts with the substrate, forming a thin film. The substrate is heated to vaporize the thin film and expose an epitaxy surface. The epitaxy surface is substantially free of oxides. Epitaxial deposition is then used to form an epitaxial layer on the epitaxy surface.
    Type: Application
    Filed: February 3, 2006
    Publication date: August 9, 2007
    Inventors: Andrew Lam, Yihwan Kim, Satheesh Kuppurao, See-Eng Phan, Xinliang Lu, Chien-Teh Kao
  • Patent number: 7252737
    Abstract: Generally, a substrate support member for supporting a substrate is provided. In one embodiment, a substrate support member for supporting a substrate includes a body coupled to a lower shield. The body has an upper surface adapted to support the substrate and a lower surface. The lower shield has a center portion and a lip. The lip is disposed radially outward of the body and projects towards a plane defined by the first surface. The lip is disposed in a spaced-apart relation from the body. The lower shield is adapted to interface with an upper shield disposed in a processing chamber to define a labyrinth gap that substantially prevents plasma from migrating below the member. The lower shield, in another embodiment, provides the plasma with a short RF ground return path.
    Type: Grant
    Filed: April 6, 2004
    Date of Patent: August 7, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Karl Brown, Vineet Mehta, See-Eng Phan, Semyon Sherstinsky, Allen Lau
  • Publication number: 20060093730
    Abstract: A method of detecting a property of an energized gas in a process chamber involves providing a substrate having a hydride precursor in the chamber. The substrate is exposed to an energized gas comprising hydrogen in the chamber to form a hydride compound in the precursor layer. A sheet resistance of the layer is measured to determine the property of the energized gas, such as at least one of the processing uniformity and cleaning ability of the energized gas. One or more process parameters can be selected in relation to the measured sheet resistance to improve the energized gas processing uniformity and cleaning ability.
    Type: Application
    Filed: November 3, 2004
    Publication date: May 4, 2006
    Inventors: See-Eng Phan, Ralf Hofmann, Tong Zhang, Yehuda Demayo, Sreekrishnan Sankaranarayanan, Chiukin Lai
  • Publication number: 20060051966
    Abstract: A method and apparatus for cleaning a processing chamber comprising blocking a flow of cooling fluid to a channel within a support member within a processing chamber, elevating the support member to be within about 0.1 inches of a gas distribution plate, heating the gas distribution plate, and introducing a thermally conductive gas through the gas distribution plate into the processing chamber.
    Type: Application
    Filed: November 3, 2005
    Publication date: March 9, 2006
    Inventors: David Or, Jing-Pei Chou, See-Eng Phan, Xinliang Lu, Chien-Teh Kao, Mei Chang
  • Publication number: 20050230350
    Abstract: A method and apparatus for removing native oxides from a substrate surface is provided. In one aspect, the chamber comprises a chamber body and a support assembly at least partially disposed within the chamber body and adapted to support a substrate thereon. The support assembly includes one or more fluid channels at least partially formed therein and capable of cooling the substrate. The chamber further comprises a lid assembly disposed on an upper surface of the chamber body. The lid assembly includes a first electrode and a second electrode which define a plasma cavity therebetween, wherein the second electrode is adapted to connectively heat the substrate.
    Type: Application
    Filed: February 22, 2005
    Publication date: October 20, 2005
    Inventors: Chien-Teh Kao, Jing-Pei Chou, Chiukin Lai, Sal Umotoy, Joel Huston, Son Trinh, Mei Chang, Xiaoxiong Yuan, Yu Chang, Xinliang Lu, Wei Wang, See-Eng Phan
  • Publication number: 20050221552
    Abstract: A substrate support assembly and method for supporting a substrate are provided. In at least one embodiment, the support assembly includes a body having one or more fluid conduits disposed therethrough, and a support member disposed on a first end of the body. The support member includes one or more fluid channels formed in an upper surface thereof, wherein each fluid channel is in communication with the one or more of the fluid conduits. The support assembly also includes a cooling medium source in fluid communication with the one or more fluid conduits, and a first electrode having a plurality of holes formed therethrough. The first electrode is disposed on the upper surface of the support member such that each of the plurality of holes is in fluid communication with at least one of the one or more fluid channels formed in the upper surface of the support member.
    Type: Application
    Filed: May 24, 2005
    Publication date: October 6, 2005
    Inventors: Chien-Teh Kao, Jing-Pei (Connie) Chou, Chiukin (Steven) Lai, Sal Umotoy, Joel Huston, Son Trinh, Mei Chang, Xiaoxiong (John) Yuan, Yu Chang, Xinliang Lu, Wei Wang, See-Eng Phan
  • Publication number: 20050218507
    Abstract: A lid assembly for semiconductor processing is provided. In at least one embodiment, the lid assembly includes a first electrode comprising an expanding section that has a gradually increasing inner diameter. The lid assembly also includes a second electrode disposed opposite the first electrode. A plasma cavity is defined between the inner diameter of the expanding section of the first electrode and a first surface of the second electrode.
    Type: Application
    Filed: May 24, 2005
    Publication date: October 6, 2005
    Inventors: Chien-Teh Kao, Jing-Pei (Connie) Chou, Chiukin (Steven) Lai, Sal Umotoy, Joel Huston, Son Trinh, Mei Chang, Xiaoxiong (John) Yuan, Yu Chang, Xinliang Lu, Wei Wang, See-Eng Phan
  • Publication number: 20050205110
    Abstract: A method for removing native oxides from a substrate surface is provided. In at least one embodiment, the method includes supporting the substrate surface in a vacuum chamber and generating reactive species from a gas mixture within the chamber. The substrate surface is then cooled within the chamber and the reactive species are directed to the cooled substrate surface to react with the native oxides thereon and form a film on the substrate surface. The substrate surface is then heated within the chamber to vaporize the film.
    Type: Application
    Filed: May 24, 2005
    Publication date: September 22, 2005
    Inventors: Chien-Teh Kao, Jing-Pei (Connie) Chou, Chiukin (Steven) Lai, Sal Umotoy, Joel Huston, Son Trinh, Mei Chang, Xiaoxiong (John) Yuan, Yu Chang, Xinliang Lu, Wei Wang, See-Eng Phan