Patents by Inventor Seiichi Suenaga

Seiichi Suenaga has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080226899
    Abstract: A high-frequency magnetic material is provided and includes: an oxide phase including: a first oxide of a first element being at least one selected from the group consisting of Mg, Al, Si, Ca, Zr, Ti, Hf, Zn, Mn, a rare-earth element, Ba, and Sr, and a second oxide of a second element being at least one selected from the group consisting of Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, and Zn, the first oxide and at least a part of the second oxide being formed into a solid solution; and magnetic metal particles including at least one of Fe and Co and having a particle size of 1 to 100 nm, the magnetic metal particles being deposited on a surface and inside of the oxide phase, the magnetic metal particles occupying 50% of a volume of the high-frequency magnetic material exclusive of a void.
    Type: Application
    Filed: March 11, 2008
    Publication date: September 18, 2008
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tomohiro SUETSUNA, Seiichi Suenaga, Kouichi Harada
  • Publication number: 20080220231
    Abstract: A core-shell type magnetic particle comprises magnetic metal particle and an oxide coating layer formed on the surface of the magnetic metal particle. The magnetic metal particle contains a magnetic metal containing at least one selected from the group consisting of Fe, Co and Ni, a nonmagnetic metal and at least one element selected from carbon and nitrogen. The oxide coating layer is constituted of an oxide or a composite oxide containing the nonmagnetic metal which is one of the constituents of the magnetic metal particle.
    Type: Application
    Filed: August 28, 2007
    Publication date: September 11, 2008
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tomohiro Suetsuna, Kouichi Harada, Seiichi Suenaga
  • Publication number: 20080166592
    Abstract: A magnetic material includes a substrate and a composite magnetic film formed on the substrate. The composite magnetic film comprises a plurality of columnar members formed on the substrate and having a longitudinal direction perpendicular to a surface of the substrate, each of the columnar members containing a magnetic metal or a magnetic alloy selected from at least one of Fe, Co, and Ni, and an inorganic insulator formed between the columnar members and selected from an oxide, a nitride, and fluoride of metal. The composite magnetic film has a minimum anisotropy magnetic field Hk1 in a surface parallel to the substrate surface and a maximum anisotropy magnetic field Hk2 in a surface parallel to the substrate surface, a ratio Hk2/Hk1 is greater than 1.
    Type: Application
    Filed: March 17, 2008
    Publication date: July 10, 2008
    Inventors: Maki Yonetsu, Naoyuki Nakagawa, Seiichi Suenaga, Tomohiro Suetsuna, Shinya Sakurada
  • Patent number: 7348591
    Abstract: A switch element includes a substrate; a plurality of carbon nanotubes provided upright on the substrate; magnetic particles arranged at tip ends of the carbon nanotubes respectively; and a plurality of conductive layers formed between base ends of the carbon nanotubes and the substrate. A switching operation of the switching element is performed in such a manner that the carbon nanotubes or the magnetic particles are brought into contact with each other according to an electrical potential between the conductive layers, and the carbon nanotubes are separated from each other when an electrical current flows through the carbon nanotubes with the carbon nanotubes or the magnetic particles brought into contact with each other.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: March 25, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Yamauchi, Chika Tanaka, Hideyuki Sugiyama, Atsuhiro Kinoshita, Junji Koga, Yuichi Motoi, Yoshihiko Nakano, Seiichi Suenaga
  • Publication number: 20080029300
    Abstract: An insulating magnetic metal particle includes a magnetic metal particle containing at least one metal selected from the group consisting of Co, Fe, and Ni and having a diameter of 5 to 500 nm, a first inorganic insulating layer made of an oxide that covers the surface of the magnetic metal particle, and a second inorganic insulating layer made of an oxide that produces a eutectic crystal by reacting together with the first inorganic insulating layer at the time of heating them, the second inorganic insulating layer being coated on the first inorganic insulating layer. A thickness ratio of the second inorganic insulating layer with respect to the first inorganic insulating layer is set so that the first inorganic insulating layer remains on the surface of the magnetic metal particle after producing the eutectic crystal.
    Type: Application
    Filed: July 23, 2007
    Publication date: February 7, 2008
    Inventors: Kouichi Harada, Tomohiro Suetsuna, Seiichi Suenaga, Maki Yonetsu
  • Publication number: 20070269681
    Abstract: A high-frequency magnetic material comprises an artificial medium having a structure in which a plurality of unit particles align in a matrix medium, wherein the unit particle is composed of a split ring type conductor, or a combination of the split ring type conductor and a dielectric material, and the matrix medium contains a magnetic material.
    Type: Application
    Filed: May 9, 2007
    Publication date: November 22, 2007
    Inventors: Fumihiko AIGA, Seiichi Suenaga, Maki Yonetsu
  • Patent number: 7189472
    Abstract: An electrode for a fuel cell, including a porous catalytic carrier including conductive fibers having two particle diameter distribution peaks of a first particle diameter distribution peak existing at a small particle diameter side and a second particle diameter distribution peak existing at a large particle diameter side, wherein said conducting fibers are carbon nano-fibers formed from a catalyst for formation prepared by preparing a mixed powder including one or more of a reducible metallic oxide powder and a non-reducible metallic oxide powder, mixing and pulverizing the mixed powder, and heating the mixed powder under reducing atmosphere; catalyst to be carried on said conductive fibers belonging to the first particle diameter distribution peak; and a proton conductive material adhered on surface of at least the conducive fibers belonging to the first particle diameter distribution peak, so as to come into contact with the catalyst.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: March 13, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Seiichi Suenaga, Maki Yonetsu, Norihiro Tomimatsu, Hideyuki Ohzu, Yasuhiro Goto, Yoshihiko Nakano
  • Publication number: 20070037414
    Abstract: A switch element includes a substrate; a plurality of carbon nanotubes provided upright on the substrate; magnetic particles arranged at tip ends of the carbon nanotubes respectively; and a plurality of conductive layers formed between base ends of the carbon nanotubes and the substrate. A switching operation of the switching element is performed in such a manner that the carbon nanotubes or the magnetic particles are brought into contact with each other according to an electrical potential between the conductive layers, and the carbon nanotubes are separated from each other when an electrical current flows through the carbon nanotubes with the carbon nanotubes or the magnetic particles brought into contact with each other.
    Type: Application
    Filed: August 11, 2006
    Publication date: February 15, 2007
    Inventors: Takashi Yamauchi, Chika Tanaka, Hideyuki Sugiyama, Atsuhiro Kinoshita, Junji Koga, Yuichi Motoi, Yoshihiko Nakano, Seiichi Suenaga
  • Patent number: 7125822
    Abstract: This invention provides a fuel cell catalyst including a carbon support containing at least one first element selected from the group consisting of B, N, and P, and catalyst particles supported on the carbon support, wherein the catalyst particles include at least one of platinum particles and alloy particles containing Pt and an element A, and the element A contains at least one element selected from the group consisting of platinum group elements and period 4 to 6 transition metal elements.
    Type: Grant
    Filed: August 12, 2003
    Date of Patent: October 24, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshihiko Nakano, Wu Mei, Maki Yonetsu, Shinichi Onodera, Seiichi Suenaga, Hideyuki Ohzu
  • Publication number: 20060214855
    Abstract: The invention provides a compact and thin antenna device capable of carrying out highly efficient transmission and reception. The antenna device includes an antenna substrate and an antenna arranged directly or in the vicinity of the main face of the antenna substrate. The antenna substrate comprises a plurality of insulating layers mutually layered and bonded, and a plurality of magnetic particles arranged in bonded interfaces of the insulating layers and being embedded in both of the insulating layers of the bonded interfaces.
    Type: Application
    Filed: March 20, 2006
    Publication date: September 28, 2006
    Inventors: Koichi Harada, Tomohiro Suetsuna, Seiichi Suenaga
  • Publication number: 20060073388
    Abstract: An inorganic solid electrolytic rechargeable battery capable of offering excellent battery characteristics is disclosed. The battery has positive and negative electrodes and an inorganic electrolyte interposed therebetween. The positive and negative electrodes are each made up of an active material layer and a current collector layer. The positive electrode collector layer or the negative electrode collector layer is a conductive metal oxide layer. The negative electrode active material layer is made of lithium metals or lithium alloys. This negative active layer may alternatively be made of a material which causes an operation voltage potential of the negative electrode to become more noble than 1.0 V with respect to the potential of a metallic lithium. A complexity-reduced fabrication method of the rechargeable battery is also disclosed.
    Type: Application
    Filed: September 23, 2005
    Publication date: April 6, 2006
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Koichi Harada, Hiroki Inagaki, Seiichi Suenaga
  • Publication number: 20060068196
    Abstract: A high-frequency magnetic material includes: metal particles of one of Fe and Co or alloy particles based on at least one of Fe and Co; and an oxide phase containing a matrix phase and a metal oxide having a larger valence than the matrix phase. The matrix phase contains a non-reducible metal oxide and the metal oxide having a larger valence than the matrix phase forms a solid solution with the matrix phase.
    Type: Application
    Filed: September 20, 2005
    Publication date: March 30, 2006
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Seiichi Suenaga, Takayuki Fukasawa, Tomohiro Suetsuna, Koichi Harada
  • Patent number: 7005405
    Abstract: The present invention is to provide a metal oxide sintered structure having a homogeneous catalyst supporting ability, and a production method therefor. Hardly reducing oxide powders and reducing oxide powders are mixed, and then kneaded with a binder. By extrusion molding, a structure comprising channels (fluid communicating holes) is formed. Then, after heating reaction and solid solution, it is reduced under an atmosphere containing a hydrogen. Thereby, a metal oxide sintered structure having the fluid communicating holes, with the metal particles precipitated on the surface is produced. The structure is suitable for use as a catalyst for a fuel cell, or the like.
    Type: Grant
    Filed: September 4, 2002
    Date of Patent: February 28, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Seiichi Suenaga, Takayuki Fukasawa, Miho Maruyama, Yasuhiro Goto
  • Publication number: 20060002844
    Abstract: The carbon fibers of this invention is characterized in that irreducible inorganic material particles in a mean primary particle size below 500 nm and reducible inorganic material particles in a mean primary particle size below 500 nm were mixed by pulverizing and then, the mixture was heat treated under the reducing atmosphere and metal particles in a mean particle size below 1 ?m were obtained, and the mixed powder of the thus obtained metal particles with the irreducible inorganic material particles are included in the carbon fibers.
    Type: Application
    Filed: July 2, 2004
    Publication date: January 5, 2006
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Seiichi Suenaga, Maki Yonetsu, Norihiro Tomimatsu, Hideyuki Oozu, Yasuhiro Goto, Yoshihiko Nakano, Shinichi Onodera
  • Publication number: 20040168367
    Abstract: There is disclosed a metal particle-dispersed composite oxide comprising a matrix material containing a composite oxide comprising a non-reducible metal oxide and an easily reducible metal oxide, the composite oxide containing 0.01 to 0.25 mol % of at least one additive metal selected from Al, Sc, Cr, B, Fe, Ga, In, Lu, Nb and Si, surface metal particles precipitated on an outer surface of the matrix material containing the composite oxide, and inner metal particles precipitated on an inner surface of the matrix material containing the composite oxide.
    Type: Application
    Filed: February 26, 2004
    Publication date: September 2, 2004
    Inventors: Seiichi Suenaga, Tomohiro Suetsuna, Takayuki Fukasawa, Yasuhiro Goto, Koichi Harada
  • Publication number: 20040072061
    Abstract: This invention provides a fuel cell catalyst including a carbon support containing at least one first element selected from the group consisting of B, N, and P, and catalyst particles supported on the carbon support, wherein the catalyst particles include at least one of platinum particles and alloy particles containing Pt and an element A, and the element A contains at least one element selected from the group consisting of platinum group elements and period 4 to 6 transition metal elements.
    Type: Application
    Filed: August 12, 2003
    Publication date: April 15, 2004
    Inventors: Yoshihiko Nakano, Wu Mei, Maki Yonetsu, Shinichi Onodera, Seiichi Suenaga, Hideyuki Ohzu
  • Publication number: 20030064886
    Abstract: The present invention is to provide a metal oxide sintered structure having a homogeneous catalyst supporting ability, and a production method therefor. Hardly reducing oxide powders and reducing oxide powders are mixed, and then kneaded with a binder. By extrusion molding, a structure comprising channels (fluid communicating holes) is formed. Then, after heating reaction and solid solution, it is reduced under an atmosphere containing a hydrogen. Thereby, a metal oxide sintered structure having the fluid communicating holes, with the metal particles precipitated on the surface is produced. The structure is suitable for use as a catalyst for a fuel cell, or the like.
    Type: Application
    Filed: September 4, 2002
    Publication date: April 3, 2003
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Seiichi Suenaga, Takayuki Fukasawa, Miho Maruyama, Yasuhiro Goto
  • Publication number: 20020177032
    Abstract: The present invention provides a electrode layer for fuel cells which is improved in the efficiency of a catalyst, the diffusion capability of fuel, the stabilization and the high output.
    Type: Application
    Filed: March 28, 2002
    Publication date: November 28, 2002
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Seiichi Suenaga, Maki Yonetsu, Norihiro Tomimatsu, Hideyuki Ohzu, Yasuhiro Goto, Yoshihiko Nakano
  • Patent number: 6194083
    Abstract: A ceramic composite material comprises a ceramic material constituting a matrix, and dispersion particles disposed in the matrix in a dispersing manner. A specific shape of a ceramic composite material is, for instance, a sinter or a thermally sprayed layer. The dispersion particles are consisting of a composite oxide including at least one kind of a first metallic element selected from alkaline earth metals such as Mg and Ca, and at least one kind of a second metallic element selected from W, Ti, Ta, Mo, Nb, V, B, Te, Ge and Si, for instance, are composite oxide particles precipitated by reacting a compound containing a first metallic element and a compound including a second metallic element through heat treatment. The precipitated particles consisting of such a composite oxide can be dispersed as planar particles or acicular particles in the ceramic layer to which, for instance, thermal spraying is applied.
    Type: Grant
    Filed: July 27, 1998
    Date of Patent: February 27, 2001
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazuhiro Yasuda, Seiichi Suenaga, Kunihiko Wada, Hiroki Inagaki, Yasuhiro Goto
  • Patent number: 6121540
    Abstract: A composite material substrate comprises a matrix material and a skeleton structure of a fibrous material. The matrix material exclusively participates in the thermal expansion of the substrate and the fibrous material in the mechanical strength thereof. The fibrous material constituting the skeleton structure has no influence on the thermal expansion profile of the matrix material, and the skeleton structure is loosely bonded to the matrix material at their interface. The substrate is used for solar cells. Photoelectric transfer layers of semiconductors are formed on the substrate to fabricate large-sized solar cells.
    Type: Grant
    Filed: June 28, 1999
    Date of Patent: September 19, 2000
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiromitsu Takeda, Atsushi Kamata, Hiroki Inagaki, Seiichi Suenaga