Patents by Inventor Senh Thach

Senh Thach has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8941969
    Abstract: An electrostatic chuck includes a thermally conductive base having a plurality of heating elements disposed therein. A metal layer covers at least a portion of the thermally conductive base, wherein the metal layer shields the plurality of heating elements from radio frequency (RF) coupling and functions as an electrode for the electrostatic chuck. A plasma resistant dielectric layer covers the metal layer.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: January 27, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Senh Thach, Dmitry Lubomirsky, Jennifer Y. Sun, Konstantin Makhratchev
  • Patent number: 8871312
    Abstract: Specialty ceramic materials which resist corrosion/erosion under semiconductor processing conditions which employ a corrosive/erosive plasma. The corrosive plasma may be a halogen-containing plasma. The specialty ceramic materials have been modified to provide a controlled electrical resistivity which suppresses plasma arcing potential.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: October 28, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Kenneth S. Collins, Ren-Guan Duan, Senh Thach, Thomas Graves, Xiaoming He, Jie Yuan
  • Publication number: 20140177123
    Abstract: An electrostatic chuck includes a thermally conductive base having a plurality of heating elements disposed therein. A metal layer covers at least a portion of the thermally conductive base, wherein the metal layer shields the plurality of heating elements from radio frequency (RF) coupling and functions as an electrode for the electrostatic chuck. A plasma resistant dielectric layer covers the metal layer.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Senh Thach, Dmitry Lubomirsky, Jennifer Y. Sun, Konstantin Makhratchev
  • Patent number: 8758858
    Abstract: A method of creating a plasma-resistant thermal oxide coating on a surface of an article, where the article is comprised of a metal or metal alloy which is typically selected from the group consisting of yttrium, neodymium, samarium, terbium, dysprosium, erbium, ytterbium, scandium, hafnium, niobium or combinations thereof. The oxide coating is formed using a time-temperature profile which includes an initial rapid heating rage, followed by a gradual decrease in heating rate, to produce an oxide coating structure which is columnar in nature. The grain size of the crystals which make up the oxide coating is larger at the surface of the oxide coating than at the interface between the oxide coating and the metal or metal alloy substrate, and the oxide coating is in compression at the interface between the oxide coating and the metal or metal alloy substrate.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: June 24, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Li Xu, Kenneth S. Collins, Thomas Graves, Ren-Guan Duan, Senh Thach
  • Publication number: 20140154465
    Abstract: A substrate support assembly comprises a ceramic body and a thermally conductive base bonded to a lower surface of the ceramic body. The substrate support assembly further comprises a protective layer covering an upper surface of the ceramic body, wherein the protective layer comprises at least one of yttrium aluminum garnet (YAG) or a ceramic compound comprising Y4Al2O9 and a solid-solution of Y2O3—ZrO2.
    Type: Application
    Filed: November 21, 2013
    Publication date: June 5, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Senh Thach, Biraja P. Kanungo, Vahid Firouzdor
  • Publication number: 20130284374
    Abstract: Embodiments of the present invention provide electrostatic chucks for operating at elevated temperatures. One embodiment of the present invention provides a dielectric chuck body for an electrostatic chuck. The dielectric chuck body includes a substrate supporting plate having a top surface for receiving a substrate and a back surface opposing the top surface, an electrode embedded in the substrate supporting plate, and a shaft having a first end attached to the back surface of the substrate supporting plate and a second end opposing the first end. The second end is configured to contact a cooling base and provide temperature control to the substrate supporting plate. The shaft is hollow having a sidewall enclosing a central opening, and two or more channels formed through the sidewall and extending from the first end to the second end.
    Type: Application
    Filed: March 11, 2013
    Publication date: October 31, 2013
    Inventors: Dmitry LUBOMIRSKY, Jennifer Y. SUN, Senh THACH, Xing LIN, Michael D. WILLWERTH, Konstantin MAKHRATCHEV
  • Patent number: 8367227
    Abstract: Specialty ceramic materials which resist corrosion/erosion under semiconductor processing conditions which employ a corrosive/erosive plasma. The corrosive plasma may be a halogen-containing plasma. The specialty ceramic materials have been modified to provide a controlled electrical resistivity which suppresses plasma arcing potential.
    Type: Grant
    Filed: August 2, 2007
    Date of Patent: February 5, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Kenneth S. Collins, Ren-Guan Duan, Senh Thach, Thomas Graves, Xiaoming He, Jie Yuan
  • Publication number: 20130022838
    Abstract: Specialty ceramic materials which resist corrosion/erosion under semiconductor processing conditions which employ a corrosive/erosive plasma. The corrosive plasma may be a halogen-containing plasma. The specialty ceramic materials have been modified to provide a controlled electrical resistivity which suppresses plasma arcing potential.
    Type: Application
    Filed: September 10, 2012
    Publication date: January 24, 2013
    Inventors: Jennifer Y. Sun, Kenneth S. Collins, Ren-Guan Duan, Senh Thach, Thomas Graves, Xiaoming He, Jie Yuan
  • Patent number: 8231736
    Abstract: A cleaning process for recovering an anodized aluminum part is particularly useful when the part has been exposed to a fluorine-containing plasma in etch reactor. The part is bathed in an agitated solution of a fluoride acid, such as ammonium fluoride, which converts aluminum fluoride to a soluble fluoride. The part is rinsed in water. The pores of the cleaned anodization may be resealed by a submerging the part in hot agitated deionized water.
    Type: Grant
    Filed: August 27, 2007
    Date of Patent: July 31, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Senh Thach, Xi Zhu, Li Xu, Anisul Khan
  • Patent number: 8206829
    Abstract: Plasma resistant coating materials, plasma resistant coatings and methods of forming such coatings on hardware components. In one embodiment, hardware component is an electrostatic chuck (ESC) and the plasma resistant coating is formed on a surface of the ESC. The plasma resistant coatings are formed by methods other than thermal spraying to provide plasma resistant coatings having advantageous material properties.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: June 26, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Xiao-Ming He, Senh Thach
  • Publication number: 20120125488
    Abstract: A method of creating a plasma-resistant thermal oxide coating on a surface of an article, where the article is comprised of a metal or metal alloy which is typically selected from the group consisting of yttrium, neodymium, samarium, terbium, dysprosium, erbium, ytterbium, scandium, hafnium, niobium or combinations thereof. The oxide coating is formed using a time-temperature profile which includes an initial rapid heating rage, followed by a gradual decrease in heating rate, to produce an oxide coating structure which is columnar in nature. The grain size of the crystals which make up the oxide coating is larger at the surface of the oxide coating than at the interface between the oxide coating and the metal or metal alloy substrate, and the oxide coating is in compression at the interface between the oxide coating and the metal or metal alloy substrate.
    Type: Application
    Filed: January 25, 2012
    Publication date: May 24, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Li Xu, Kenneth S. Collins, Thomas Graves, Ren-Guan Duan, Senh Thach
  • Patent number: 8129029
    Abstract: An article which is resistant to corrosion or erosion by chemically active plasmas and a method of making the article are described. The article is comprised of a metal or metal alloy substrate having on its surface a coating which is an oxide of the metal or metal alloy. The structure of the oxide coating is columnar in nature. The grain size of the crystals which make up the oxide is larger at the surface of the oxide coating than at the interface between the oxide coating and the metal or metal alloy substrate, and wherein the oxide coating is in compression at the interface between the oxide coating and the metal or metal alloy substrate. Typically the metal is selected from the group consisting of yttrium, neodymium, samarium, terbium, dysprosium, erbium, ytterbium, scandium, hafnium, niobium or combinations thereof.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: March 6, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Li Xu, Kenneth S. Collins, Thomas Graves, Ren-Guan Duan, Senh Thach
  • Patent number: 8067067
    Abstract: Disclosed herein is a method for applying plasma-resistant coatings for use in semiconductor processing apparatus. The coatings are applied over a substrate which typically comprises an aluminum alloy of the 2000 series or the 5000 through 7000 series. The coating typically comprises an oxide or a fluoride of Y, Sc, La, Ce, Eu, Dy, or the like, or yttrium-aluminum-garnet (YAG). The coating may further comprise about 20 volume % or less of Al2O3. The coatings are typically applied to a surface of an aluminum alloy substrate or an anodized aluminum alloy substrate using a technique selected from the group consisting of thermal/flame spraying, plasma spraying, sputtering, and chemical vapor deposition (CVD). To provide the desired corrosion resistance, it is necessary to place the coating in compression. This is accomplished by controlling deposition conditions during application of the coating.
    Type: Grant
    Filed: July 22, 2004
    Date of Patent: November 29, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Senh Thach, Jim Dempster, Li Xu
  • Publication number: 20110198034
    Abstract: Described herein are exemplary methods and apparatuses for fabricating a gas distribution showerhead assembly in accordance with one embodiment. In one embodiment, a method includes providing a gas distribution plate having a first set of through-holes for delivering processing gases into a semiconductor processing chamber. The first set of through-holes is located on a backside of the plate (e.g., Aluminum substrate). The method includes spraying (e.g., plasma spraying) a coating material (e.g., Ytrria based material) onto a cleaned surface of the gas distribution plate. The method includes removing (e.g., surface grinding) a portion of the coating material from the surface to reduce a thickness of the coating material. The method includes forming (e.g., UV laser drilling, machining) a second set of through-holes in the coating material such that the through-holes are aligned with the first-set of through-holes.
    Type: Application
    Filed: January 21, 2011
    Publication date: August 18, 2011
    Inventors: Jennifer Sun, Senh Thach, Ren-Guan Duan, Thomas Graves
  • Publication number: 20100156054
    Abstract: Methods and apparatus for bonding an electrostatic chuck to a component of a substrate support are provided herein. In some embodiments, an adhesive for bonding components of a substrate support may include a matrix of silicon-based polymeric material having a filler dispersed therein. The silicon based polymeric material may be a polydimethylsiloxane (PDMS) structure having a molecular weight with a low molecular weight (LMW) content ? D3-D10 of less than about 500 ppm. In some embodiments, the filler may comprise between about 50 to about 70 percent by volume of the adhesive layer. In some embodiments, the filler may comprise particles of aluminum oxide (Al2O3), aluminum nitride (AlN), yttrium oxide (Y2O3), or combinations thereof. In some embodiments, the filler may comprise particles having a diameter of about 10 nanometers to about 10 microns.
    Type: Application
    Filed: December 17, 2009
    Publication date: June 24, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Jennifer Y. Sun, Senh Thach, Ren-Guan Duan
  • Publication number: 20100140222
    Abstract: A filled polymer composition having improved plasma resistance is disclosed. The composition includes a particle filler dispersed in a polymer matrix. The particle filler can be Nb2O5, YF3, AlN, SiC or Si3N4 and rare earth oxides. In an embodiment, the composition is utilized as a bonding adhesive for electrostatic chuck, bonding adhesive for shower head, bonding adhesive for liner, sealing material, O-ring, or plastic component.
    Type: Application
    Filed: December 7, 2009
    Publication date: June 10, 2010
    Inventors: Jennifer Y. Sun, Ren-Guan Duan, Senh Thach, Li Xu
  • Patent number: 7718029
    Abstract: Embodiments of the invention provide a robust bonding material suitable for joining semiconductor processing chamber components. Other embodiments provide semiconductor processing chamber components joined using a bonding material having metal filler disposed in an adhesive layer. Other embodiments include methods for manufacturing a semiconductor processing chamber component having a bonding material that includes metal filled disposed in an adhesive layer. The metal filler is suitable for reacting with halogen containing plasmas such that a halogen based metal layer is formed on the exposed portion of the bonding material upon exposure to the plasma.
    Type: Grant
    Filed: August 1, 2006
    Date of Patent: May 18, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Li Xu, Senh Thach, Kelly A. McDonough, Robert Scott Clark
  • Publication number: 20100119843
    Abstract: Plasma resistant coating materials, plasma resistant coatings and methods of forming such coatings on hardware components. In one embodiment, hardware component is an electrostatic chuck (ESC) and the plasma resistant coating is formed on a surface of the ESC. The plasma resistant coatings are formed by methods other than thermal spraying to provide plasma resistant coatings having advantageous material properties.
    Type: Application
    Filed: November 10, 2008
    Publication date: May 13, 2010
    Applicant: Applied Materials, Inc.
    Inventors: JENNIFER Y. SUN, Xiao-Ming He, Senh Thach
  • Publication number: 20090214825
    Abstract: Particulate generation has been a problem in semiconductor device processing in highly corrosive plasma environments. The problem is exacerbated when the plasma is a reducing plasma. Empirically produced data has shown that the formation of a plasma spray coated yttrium-comprising ceramic such as yttrium oxide, Y2O3—ZrO2 solid solution, YAG, and YF3 provides a low porosity coating with smooth and compacted surfaces when such ceramics are spray coated from a powder feed having an average effective diameter ranging from about 22 ?m to about 0.1 ?m. These spray-coated materials reduce the generation of particulates in corrosive reducing plasma environments.
    Type: Application
    Filed: February 26, 2008
    Publication date: August 27, 2009
    Inventors: Jennifer Y. Sun, Xiaoming He, Kenneth S. Collins, Thomas Graves, Senh Thach, Jie Yuan, Li Xu, Ren-Guan Duan
  • Publication number: 20090162647
    Abstract: An article which is resistant to corrosion or erosion by chemically active plasmas and a method of making the article are described. The article is comprised of a metal or metal alloy substrate having on its surface a coating which is an oxide of the metal or metal alloy. The structure of the oxide coating is columnar in nature. The grain size of the crystals which make up the oxide is larger at the surface of the oxide coating than at the interface between the oxide coating and the metal or metal alloy substrate, and wherein the oxide coating is in compression at the interface between the oxide coating and the metal or metal alloy substrate. Typically the metal is selected from the group consisting of yttrium, neodymium, samarium, terbium, dysprosium, erbium, ytterbium, scandium, hafnium, niobium or combinations thereof.
    Type: Application
    Filed: December 21, 2007
    Publication date: June 25, 2009
    Inventors: Jennifer Y. Sun, Li Xu, Kenneth S. Collins, Thomas Graves, Ren-Guan Duan, Senh Thach