Patents by Inventor Senh Thach

Senh Thach has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6736668
    Abstract: An electrical coupler comprises an inner connector having upper and lower ends, an insulative outer connector element circumscribing the inner connector, and a thermally conductive flange disposed over the upper end of the inner connector and the outer connector for conducting heat from the electrical conductor. The electrical conductor may be utilized in a substrate support for semiconductor wafer processing. The substrate support comprises a chuck body having an electrode embedded therein, and an upper male connector coupled to the electrode and protruding from said chuck body. A cooling plate having the electrical coupler is positioned proximate to the chuck body. The upper male connector is inserted in the electrical coupler, and a power source coupled to the lower portion of the electrical coupler chucks and biases a wafer to an upper surface of said chuck. The thermally conductive flange conducts and transfers heat generated from the upper male connector and electrical coupler to the cooling plate.
    Type: Grant
    Filed: September 15, 2000
    Date of Patent: May 18, 2004
    Inventors: Arnold V. Kholodenko, Senh Thach, Wing L. Cheng, Alvin Lau, Dennis S. Grimard
  • Publication number: 20040081439
    Abstract: An apparatus for controlling a temperature of a substrate during semiconductor substrate processing including a semiconductor substrate processing chamber and a substrate support disposed in the chamber. The substrate support includes heater electrode adapted for connection to a power source and disposed within the substrate support, and a meter coupled to the heater electrode for measuring resistivity of the heater electrode as an indicator of the temperature of the heater electrode. A controller is also coupled to the meter and the power source wherein the controller regulates power distribution from the power source to the heater electrode based upon a temperature of the heater electrode, where the temperature is determined from a measured resistivity of the heater electrode.
    Type: Application
    Filed: October 24, 2003
    Publication date: April 29, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Arnold Kholodenko, Senh Thach, Dennis Grimard
  • Publication number: 20040041004
    Abstract: We have discovered a method of producing a complex-shaped aluminum alloy article, where welding has been employed to form the article, where an anodized aluminum coating is produced over a surface of the article including the weld joint, and where the anodized aluminum coating is uniform, providing improved performance over that previously known in the art for welded articles exposed to a corrosive plasma environment.
    Type: Application
    Filed: August 28, 2003
    Publication date: March 4, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Senh Thach, Jennifer Y. Sun, Shun Jackson Wu, Yixing Lin, Clifford C. Stow
  • Patent number: 6659331
    Abstract: We have discovered a method of producing a complex-shaped aluminum alloy article, where welding has been employed to form the article, where an anodized aluminum coating is produced over a surface of the article including the weld joint, and where the anodized aluminum coating is uniform, providing improved performance over that previously known in the art for welded articles exposed to a corrosive plasma environment.
    Type: Grant
    Filed: February 26, 2002
    Date of Patent: December 9, 2003
    Assignee: Applied Materials, Inc
    Inventors: Senh Thach, Jennifer Y. Sun, Shun Jackson Wu, Yixing Lin, Clifford C. Stow
  • Publication number: 20030205479
    Abstract: We have discovered that the formation of particulate inclusions at the surface of an aluminum alloy article, which inclusions interfere with a smooth transition from the alloy surface to an overlying aluminum oxide protective film, can be controlled by maintaining the content of mobile and nonmobile impurities within a specific range and controlling the particulate size and distribution of the mobile and nonmobile impurities and compounds thereof; by heat-treating the aluminum alloy at a temperature less than about 330° C.; and by creating the aluminum oxide protective film by employing a particular electrolytic process. When these factors are taken into consideration, an improved aluminum oxide protective film is obtained.
    Type: Application
    Filed: May 3, 2002
    Publication date: November 6, 2003
    Inventors: Yixing Lin, Brian T. West, Shun Jackson Wu, Clifford C. Stow, Senh Thach, Hong Wang, Jennifer Y. Sun
  • Publication number: 20030192646
    Abstract: A magnetic assembly for a plasma processing chamber includes an annular housing having a radially outward face and a radially inwardly facing opening, a cover plate to seal the radially inwardly facing opening, and a plurality of magnets in the annular housing. The magnets may be in preassembled modules that abut one another in a ring configuration within the annular housing. A plasma processing chamber using the magnetic assembly includes a substrate support that can fit in an inner radius of the magnetic assembly, a gas supply to maintain process gas at a pressure in the chamber, a gas energizer to energize the process gas, and an exhaust to exhaust the process gas.
    Type: Application
    Filed: April 12, 2002
    Publication date: October 16, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Robert W. Wu, Wing L. Cheng, You Wang, Senh Thach, Hamid Noorbakhsh, Kwok Manus Wong, Jennifer Y. Sun
  • Publication number: 20030164354
    Abstract: An integrated in situ etch process performed in a multichamber substrate processing system having first and second etching chambers. In one embodiment the first chamber includes an interior surface that has been roughened to at least 100 Ra and the second chamber includes an interior surface that has a roughness of less than about 32 Ra. The process includes transferring a substrate having formed thereon in a downward direction a patterned photoresist mask, a dielectric layer, a barrier layer and a feature in the substrate to be contacted into the first chamber where the dielectric layer is etched in a process that encourages polymer formation over the roughened interior surface of the chamber. The substrate is then transferred from the first chamber to the second chamber under vacuum conditions and, in the second chamber, is exposed to a reactive plasma such as oxygen to strip away the photoresist mask deposited over the substrate.
    Type: Application
    Filed: March 3, 2003
    Publication date: September 4, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Chang-Lin Hsieh, Diana Xiaobing Ma, Brian Sy Yuan Shieh, Gerald Zheyao Yin, Jennifer Sun, Senh Thach, Lee Luo, Claes H. Bjorkman
  • Publication number: 20030160085
    Abstract: We have discovered a method of producing a complex-shaped aluminum alloy article, where welding has been employed to form the article, where an anodized aluminum coating is produced over a surface of the article including the weld joint, and where the anodized aluminum coating is uniform, providing improved performance over that previously known in the art for welded articles exposed to a corrosive plasma environment.
    Type: Application
    Filed: February 26, 2002
    Publication date: August 28, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Senh Thach, Jennifer Y. Sun, Shun Jackson Wu, Yixing Lin, Clifford C. Stow
  • Publication number: 20030150530
    Abstract: We have discovered that the formation of particulate inclusions at the surface of an aluminum alloy article, which inclusions interfere with a smooth transition from the alloy surface to an overlying aluminum oxide protective film can be controlled by maintaining the content of mobile impurities within a specific range and controlling the particulate size and distribution of the mobile impurities and compounds thereof; by heat-treating the aluminum alloy at a temperature less than about 330° C.; and by creating the aluminum oxide protective film by employing a particular electrolytic process. When these factors are taken into consideration, an improved aluminum oxide protective film is obtained.
    Type: Application
    Filed: February 8, 2002
    Publication date: August 14, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Yixing Lin, Brian T. West, Hong Wang, Shun Jackson Wu, Jennifer Y. Sun, Clifford C. Stow, Senh Thach
  • Patent number: 6572814
    Abstract: A method of fabricating a semiconductor wafer support chuck apparatus having a first sintered layer and a second sintered layer. The method comprising the steps of providing the first sintered layer having a plurality of gas distribution ports and providing the second sintered layer having a plurality of grooves. The first sintered layer is stacked on top of the second sintered layer, where a diffusion bonding layer is disposed between the first sintered layer and the second sintered layer. Thereafter, the stacked first and second sintered layers are resintered such that the diffusion bonding layer joins the first and second sintered layers together to form a semiconductor wafer support apparatus.
    Type: Grant
    Filed: May 24, 2001
    Date of Patent: June 3, 2003
    Assignee: Applied Materials Inc.
    Inventors: Shamouil Shamoulian, Arnold Kholodenko, Senh Thach, Wing Cheng
  • Publication number: 20030047464
    Abstract: A uniform, controllable method for electrochemically roughening an aluminum-comprising surface to be used in a semiconductor processing apparatus is disclosed Typically the aluminum-comprising surface is aluminum or an aluminum alloy. The method involves immersing an aluminum-comprising surface in an HCl solution having a concentration ranging from about 1 volume % to about 5 volume %, at a temperature within the range of about 45° C. to about 80° C., then applying an electrical charge having a charge density ranging from about 80 amps/ft.2 to about 250 amps/ft.2 for a time period ranging from about 4 minutes to about 25 minutes. A chelating agent may be added to enhance the roughening process. The electrochemical roughening method can be used on aluminum alloys in general, including but not limited to 6061 and LP. The electrochemical roughening provides a smoothly rolling surface which does not entrap particles and which provides increased surface area for semiconductor process byproduct adhesion.
    Type: Application
    Filed: July 27, 2001
    Publication date: March 13, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Clifford C. Stow, Senh Thach
  • Publication number: 20020171994
    Abstract: An apparatus for reducing by-product formation in a semiconductor wafer-processing chamber. In a first embodiment, the apparatus comprises a chuck having a chucking electrode and a radially extending peripheral flange. A collar is disposed over the peripheral flange defining a first gap therebetween, and circumscribes the chuck. A heater element is embedded within the collar and adapted for connection to a power source. In a second embodiment, the apparatus comprises a chuck having a chucking electrode and a radially extending peripheral flange, and a collar having a heater element embedded therein. The collar is disposed over the peripheral flange to define a gap therebetween, and circumscribes the chuck. Moreover, a pedestal having a gas delivery system therein is disposed below the chuck and collar. In a third embodiment, the apparatus comprises a chuck having a chucking electrode and a radially extending peripheral flange, a collar, and a waste ring having a heater element embedded therein.
    Type: Application
    Filed: May 15, 2001
    Publication date: November 21, 2002
    Applicant: Applied Materials, Inc.
    Inventors: Dennis Grimard, Arnold Kholodenko, Alex Veytser, Senh Thach, Wing Cheng
  • Patent number: 6466426
    Abstract: A semiconductor wafer processing apparatus, and more specifically, a semiconductor substrate support pedestal having a substrate support, an isolator, and first and second heat transfer plates for providing a controllable, uniform temperature distribution across the diameter of a semiconductor wafer. A semiconductor wafer placed upon the pedestal is maintained uniformly at a predetermined temperature by heating the wafer with one or more electrodes embedded within the substrate support and cooling the wafer with a fluid passing through the first and second heat transfer plates.
    Type: Grant
    Filed: August 3, 1999
    Date of Patent: October 15, 2002
    Assignee: Applied Materials Inc.
    Inventors: Yeuk-Fai Edwin Mok, Dmitry Lubomirsky, Dennis Koosau, Danny Wang, Senh Thach, Paul Exline
  • Publication number: 20020022403
    Abstract: Apparatus for connecting a first component to a second component in that the first component has a first connecting member attached thereto, the second component has a second connecting member attached thereto and either of the first or second connecting members is provided with a relief. The apparatus is a connector, the first component is a power supply and the second component is an electrostatic chuck. The first connecting member has a bore provided on a top end. The second connecting member has a threaded opening for receiving the first connecting member. Alternately, the second connecting member is provided with a groove disposed radially outward of the threaded opening. The connecting members provided with the reliefs accommodate and withstand the forces exerted thereupon caused by thermal expansion during semiconductor wafer processing.
    Type: Application
    Filed: August 6, 1999
    Publication date: February 21, 2002
    Inventors: WING L. CHENG, DENNIS S. GRIMARD, SENH THACH, CHENG-HSIUNG TSAI, ASHOK K. DAS, VIJAY D. PARKHE
  • Publication number: 20010024349
    Abstract: A method of fabricating a semiconductor wafer support chuck apparatus having a first sintered layer and a second sintered layer. The method comprising the steps of providing the first sintered layer having a plurality of gas distribution ports and providing the second sintered layer having a plurality of grooves. The first sintered layer is stacked on top of the second sintered layer, where a diffusion bonding layer is disposed between the first sintered layer and the second sintered layer. Thereafter, the stacked first and second sintered layers are resintered such that the diffusion bonding layer joins the first and second sintered layers together to form a semiconductor wafer support apparatus.
    Type: Application
    Filed: May 24, 2001
    Publication date: September 27, 2001
    Applicant: Applied Materials, Inc.
    Inventors: Shamouil Shamoulian, Arnold Kholodenko, Senh Thach, Wing Cheng
  • Patent number: 6151203
    Abstract: A semiconductor wafer chuck for retaining a semiconductor wafer during semiconductor wafer processing in a semiconductor wafer processing system including a connector connecting DC chucking voltage and RF biasing power to an electrode embedded in the body of the chuck. The connector for the chuck includes two or more members joined by resilient banana connections. The connector may be adapted for use as a high temperature connector for an electrostatic chuck operated at an elevated temperature and such connector includes a thermal impedance for reducing the heat transferred from the chuck to the bottom of the connector.
    Type: Grant
    Filed: December 14, 1998
    Date of Patent: November 21, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Shamouil Shamouilian, Ananda Kumar, Arnold Kholodenko, Dennis S. Grimard, Liang Guo Wang, Gerhard Schneider, Michael G. Chafin, Semyon Kats, Alexander Veytser, Senh Thach