Patents by Inventor Sergei F. Burlatsky

Sergei F. Burlatsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160049380
    Abstract: A circuit element includes a semiconductor chip and a wire for connecting between the semiconductor chip and an additional circuit element. A plurality of wire bond connections electrically connect the wire and the semiconductor chip. The plurality of wire bond connections can be disposed on a surface of the semiconductor chip and on a surface of the wire.
    Type: Application
    Filed: August 13, 2014
    Publication date: February 18, 2016
    Applicant: HAMILTON SUNDSTRAND CORPORATION
    Inventors: Yan Chen, Sergei F. Burlatsky, Mikhail B. Gorbounov
  • Publication number: 20160040284
    Abstract: A method or control strategy in a coating apparatus for use in a coating process can include controlling differential gas pressures among multiple selected localized zones in a coating chamber with respect to each other. The controlled differential gas pressure of the multiple selected localized zones is used to influence how a coating deposits on at least one component.
    Type: Application
    Filed: July 28, 2015
    Publication date: February 11, 2016
    Inventors: Dmitri Novikov, Sergei F. Burlatsky, David Ulrich Fuller, David A. Litton
  • Publication number: 20160024955
    Abstract: A turbine engine system includes a turbine engine component having an airfoil portion and a tip, which turbine engine component having a MAXMET composite bonded to the tip. The MAXMET composite has MAX phases in a metal matrix.
    Type: Application
    Filed: December 16, 2013
    Publication date: January 28, 2016
    Inventors: Shahram Amini, Christopher W Strock, Sergei F Burlatsky, Dmitri Novikov, David Ulrich Fuller
  • Publication number: 20150361825
    Abstract: A vibration resistant fan guide vane for a gas turbine engine is provided. The fan guide vane comprises a vibration damping component made of a MAXMET composite. The damping component may be a cover that covers some or all of the fan guide vane body. Alternatively, portions of the fan guide vane body or the entire vane body may be made from MAXMET composites. The disclosure makes use of the ultrahigh, fully reversible, non-linear elastic hysteresis behavior that MAXMET composites exhibit during cyclic elastic deformation in order to damp vibration.
    Type: Application
    Filed: December 13, 2013
    Publication date: December 17, 2015
    Inventors: Shahram Amini, Christopher W. Strock, Sergei F. Burlatsky, Dmitri Novikov
  • Publication number: 20150354397
    Abstract: A stiffness controlled abradeable seal system for a gas turbine engine includes a cantilevered arm that supports one of a rotating seal surface and a static seal surface, a stiffness of the cantilevered arm controlled to achieve a desired operational temperature at a seal interface.
    Type: Application
    Filed: June 5, 2015
    Publication date: December 10, 2015
    Inventors: Dmitri Novikov, David Ulrich Furrer, Sergei F. Burlatsky
  • Publication number: 20150349362
    Abstract: A membrane electrode assembly is provided which includes an anode; a cathode; a membrane between the anode and the cathode; and a protective layer between the membrane and at least one electrode of the anode and the cathode, the protective layer having a layer of ionomer material containing a catalyst, the layer having a porosity of between 0 and 10%, an ionomer content of between 50 and 80% vol., a catalyst content of between 10 and 50% vol., and an electrical connectivity between catalyst particles of between 35 and 75%. A configuration using a precipitation layer to prevent migration of catalyst ions is also provided.
    Type: Application
    Filed: April 1, 2015
    Publication date: December 3, 2015
    Inventors: Sergei F. Burlatsky, Ned E. Cipollini, David A. Condit, Thomas H. Madden, Sathya Motupally, Lesia V. Protsailo, Timothy W. Patterson, Lei Chen, Mallika Gummalla
  • Publication number: 20150333335
    Abstract: A flow battery includes an electrode operable to be wet by a solution having a reversible redox couple reactant. In one embodiment, the electrode can have plurality of micro and macro pores, wherein the macro pores have a size at least one order of magnitude greater than a size of the micro pores. In another embodiment, the electrode includes a plurality of layers, wherein one of the plurality of layers has a plurality of macro pores, and wherein another one of the plurality of layers has a plurality of micro pores. In another embodiment, the electrode has a thickness less than approximately 2 mm. In still another embodiment, the electrode has a porous carbon layer, wherein the layer is formed of a plurality of particles bound together.
    Type: Application
    Filed: July 23, 2015
    Publication date: November 19, 2015
    Inventors: Rachid Zaffou, Michael L. Perry, Arun Pandy, Sergei F. Burlatsky, Vadim Atrazhev
  • Patent number: 9123962
    Abstract: A flow battery includes an electrode operable to be wet by a solution having a reversible redox couple reactant. In one embodiment, the electrode can have plurality of micro and macro pores, wherein the macro pores have a size at least one order of magnitude greater than a size of the micro pores. In another embodiment, the electrode includes a plurality of layers, wherein one of the plurality of layers has a plurality of macro pores, and wherein another one of the plurality of layers has a plurality of micro pores. In another embodiment, the electrode has a thickness less than approximately 2 mm. In still another embodiment, the electrode has a porous carbon layer, wherein the layer is formed of a plurality of particles bound together.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: September 1, 2015
    Assignee: United Technologies Corporation
    Inventors: Rachid Zaffou, Michael L. Perry, Arun Pandy, Sergei F. Burlatsky, Vadim Atrazhev
  • Publication number: 20150215529
    Abstract: An image processing system comprises a filter associated with a sensor array, which is operable to capture an image. The filter is provided to separate a plurality of distinct qualities of light from the scene to be captured. The filter has filter portions associated with the plurality of distinct qualities of light which are spatially pseudo-randomly ordered relative to each other. The image processing system also comprises an image reconstruction algorithm specifically designed to operate with the filter.
    Type: Application
    Filed: January 24, 2014
    Publication date: July 30, 2015
    Applicant: GOODRICH CORPORATION
    Inventors: Hongcheng Wang, Alan Matthew Finn, Serge L. Shishkin, Sergei F. Burlatsky
  • Publication number: 20150199952
    Abstract: An article includes a MAX phase solid and a high temperature melting point metallic material interdispersed with the MAX phase material.
    Type: Application
    Filed: January 7, 2015
    Publication date: July 16, 2015
    Inventors: Shahram Amini, Christopher W. Strock, Sergei F. Burlatsky, Dmitri Novikov
  • Patent number: 9023551
    Abstract: A membrane electrode assembly is provided which includes an anode; a cathode; a membrane between the anode and the cathode; and a protective layer between the membrane and at least one electrode of the anode and the cathode, the protective layer having a layer of ionomer material containing a catalyst, the layer having a porosity of between 0 and 10%, an ionomer content of between 50 and 80% vol., a catalyst content of between 10 and 50% vol., and an electrical connectivity between catalyst particles of between 35 and 75%. A configuration using a precipitation layer to prevent migration of catalyst ions is also provided.
    Type: Grant
    Filed: January 3, 2008
    Date of Patent: May 5, 2015
    Assignee: Ballard Power Systems Inc.
    Inventors: Sergei F. Burlatsky, Ned E. Cipollini, David A. Condit, Thomas H. Madden, Sathya Motupally, Lesia V. Protsailo, Timothy W. Patterson, Lei Chen, Mallika Gummalla
  • Publication number: 20150101934
    Abstract: A method for forming a trivalent chromium coating on an aluminum alloy substrate includes adding a chromium-containing solution to a vessel, immersing the aluminum alloy substrate in the chromium-containing solution, immersing a counter electrode in the chromium-containing solution, and applying an electrical potential bias to the aluminum alloy substrate with respect to its equilibrium potential to form a trivalent chromium coating on an outer surface of the aluminum alloy substrate. A method for forming a trivalent chromium coating on a metal substrate includes adding a chromium-containing solution to a vessel, immersing the metal substrate in the chromium-containing solution, immersing a counter electrode in the chromium-containing solution, and modulating an electrical potential difference between the metal substrate and the counter electrode to form a trivalent chromium coating on an outer surface of the metal substrate.
    Type: Application
    Filed: October 12, 2013
    Publication date: April 16, 2015
    Inventors: Sameh Dardona, Mark R. Jaworowski, Sergei F. Burlatsky, Dmitri Novikov, Lei Chen
  • Publication number: 20140356757
    Abstract: An example of a stable electrode structure is to use a gradient electrode that employs large platinum particle catalyst in the close proximity to the membrane supported on conventional carbon and small platinum particles in the section of the electrode closer to a GDL supported on a stabilized carbon. Some electrode parameters that contribute to electrode performance stability and reduced change in ECA are platinum-to-carbon ratio, size of platinum particles in various parts of the electrode, use of other stable catalysts instead of large particle size platinum (alloy, etc), depth of each gradient sublayer. Another example of a stable electrode structure is to use a mixture of platinum particle sizes on a carbon support, such as using platinum particles that may be 6 nanometers and 3 nanometers. A conductive support is typically one or more of the carbon blacks.
    Type: Application
    Filed: January 20, 2012
    Publication date: December 4, 2014
    Applicant: BALLARD POWER SYSTEMS INC.
    Inventors: Lesia V. Protsailo, Laura Roen Stolar, Jesse M. Marzullo, Mallika Gummalla, Sergei F. Burlatsky
  • Patent number: 8835074
    Abstract: A fuel cell includes a cell having a solid oxide electrolyte between electrodes. The cell has a first coefficient of thermal expansion. A metallic support is in electrical connection with one of the electrodes. The metallic support includes a metal substrate and a compliant porous nickel layer that is bonded to the metal substrate between the cell and the metal substrate. The metal substrate has a second coefficient of thermal expansion that nominally matches the first coefficient of thermal expansion of the cell. The metal substrate has a first stiffness and the compliant porous nickel layer has a second stiffness that is less than the first stiffness such that the compliant porous nickel layer can thermally expand and contract with the metal substrate.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: September 16, 2014
    Assignee: Ballard Power Systems Inc.
    Inventors: Justin R. Hawkes, Sergei F. Burlatsky, Sunil G. Warrier, Shubhro Ghosh, Jean Colpin
  • Publication number: 20130292211
    Abstract: The present invention is directed to an elevator system. The elevator system comprises a car, a counterweight, at least one belt connecting the car and counterweight, and at least one sheave having a surface that engages with the belt. At least part of the surface of the sheave that interfaces with the belt has a plurality of features for reducing unwanted noise created due to the interaction between the belt and the sheave surface.
    Type: Application
    Filed: January 21, 2011
    Publication date: November 7, 2013
    Inventors: David R. Polak, Christopher T. Chipman, Charles C. Coffin, Arthur Blanc, John P. Wesson, Yan Chen, Daniel G. Opoku, Sergei F. Burlatsky
  • Patent number: 8428918
    Abstract: A system generates occupancy estimates based on a Kinetic-Motion (KM)-based model that predicts the movements of occupants through a region divided into a plurality of segments. The system includes a controller for executing an algorithm representing the KM-based model. The KM-based model includes state equations that define each of the plurality of segments as containing congested portions and uncongested portions. The state equations define the movement of occupants based, in part, on the distinctions made between congested and uncongested portions of each segment.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: April 23, 2013
    Assignee: UTC Fire & Security Corporation
    Inventors: Vadim Atrazhev, Sergei F. Burlatsky, Oleg A. Vasilyev, Nikolay S. Erikhman, Robert N. Tomastik
  • Patent number: 8309264
    Abstract: A bipolar plate (30) for use in a fuel cell stack (10) includes one or more first metal layers (40a) having a tendency to grow an electrically passive layer in the presence of a fuel cell reactant gas and one or more second metal layers (40b) directly adjacent the one or more first metal layers (40a). The second metal layer has a tendency to resist growing any oxide layer in the presence of the fuel cell reactant gas to maintain a threshold electrical conductivity. The second metal layer also has a section for contacting an electrode (12, 14) and providing an electrically conductive path between the electrode (12, 14) and the first metal layer.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: November 13, 2012
    Assignee: UTC Fuel Cells, LLC
    Inventors: Sergei F. Burlatsky, Jean Colpin, Shubhro Ghosh, Nikunj Gupta, Patrick L. Hagans, Weilong Zhang
  • Publication number: 20120258345
    Abstract: A flow battery includes an electrode operable to be wet by a solution having a reversible redox couple reactant. In one embodiment, the electrode can have plurality of micro and macro pores, wherein the macro pores have a size at least one order of magnitude greater than a size of the micro pores. In another embodiment, the electrode includes a plurality of layers, wherein one of the plurality of layers has a plurality of macro pores, and wherein another one of the plurality of layers has a plurality of micro pores. In another embodiment, the electrode has a thickness less than approximately 2 mm. In still another embodiment, the electrode has a porous carbon layer, wherein the layer is formed of a plurality of particles bound together.
    Type: Application
    Filed: April 11, 2011
    Publication date: October 11, 2012
    Inventors: Rachid Zaffou, Michael L. Perry, Arun Pandy, Sergei F. Burlatsky, Vadim Atrazhev
  • Publication number: 20110275006
    Abstract: A fuel cell includes a cell having a solid oxide electrolyte between electrodes. The cell has a first coefficient of thermal expansion. A metallic support is in electrical connection with one of the electrodes. The metallic support includes a metal substrate and a compliant porous nickel layer that is bonded to the metal substrate between the cell and the metal substrate. The metal substrate has a second coefficient of thermal expansion that nominally matches the first coefficient of thermal expansion of the cell. The metal substrate has a first stiffness and the compliant porous nickel layer has a second stiffness that is less than the first stiffness such that the compliant porous nickel layer can thermally expand and contract with the metal substrate.
    Type: Application
    Filed: January 22, 2009
    Publication date: November 10, 2011
    Inventors: Justin R. Hawkes, Sergei F. Burlatsky, Sunil G. Warrier, Shubhro Ghosh, Jean Colpin
  • Patent number: 7883558
    Abstract: An emission treatment system includes a separation device having a vessel that includes an inlet for receiving an emission stream having entrained solid particles. A first outlet from the vessel discharges captured solid particles from the emission stream and a second outlet from the vessel discharges a clean stream having fewer entrained solid particles than the emission stream received into the separation device. A particle collector is fluidly connected with the separation device and includes a collection portion for capturing solid particles from the emission stream.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: February 8, 2011
    Assignee: United Technologies Corporation
    Inventors: Eric J. Gottung, Bruce H. Easom, Sergei F. Burlatsky, Leo A. Smolensky, Luca Bertuccioli