Patents by Inventor Seshadri Ganguli

Seshadri Ganguli has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070235059
    Abstract: A semiconductor processing chamber is cleaned by introducing a cleaning gas into a processing chamber, striking a plasma in a remote plasma source that is in communication with the processing chamber, measuring the impedance of the plasma, vaporizing a ruthenium containing deposit on a surface of the processing chamber to form a ruthenium containing gas mixture, and flowing the gas mixture through an analyzer and into an exhaust collection assembly. The measurement of the impedance of the plasma in combination with the ruthenium concentration provides an accurate indication of chamber cleanliness.
    Type: Application
    Filed: April 7, 2006
    Publication date: October 11, 2007
    Inventors: Schubert Chu, Frederick Wu, Christophe Marcadal, Seshadri Ganguli, Dien-Yeh Wu, Kavita Shah, Paul Ma
  • Patent number: 7270709
    Abstract: A precursor and method for filling a feature in a substrate. The method generally includes depositing a barrier layer, the barrier layer being formed from pentakis(dimethylamido)tantalum having less than about 5 ppm of impurities. The method additionally may include depositing a seed layer over the barrier layer and depositing a conductive layer over the seed layer. The precursor generally includes pentakis(dimethylamido)tantalum having less than about 5 ppm of impurities. The precursor is generated in a canister coupled to a heating element configured to reduce formation of impurities.
    Type: Grant
    Filed: May 2, 2005
    Date of Patent: September 18, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Ling Chen, Vincent W. Ku, Hua Chung, Christophe Marcadal, Seshadri Ganguli, Jenny Lin, Dien-Yeh Wu, Alan Ouye, Mei Chang
  • Patent number: 7264846
    Abstract: A method of ruthenium layer formation for high aspect ratios, interconnect features is described. The ruthenium layer is formed using a cyclical deposition process. The cyclical deposition process comprises alternately adsorbing a ruthenium-containing precursor and a reducing gas on a substrate structure. The adsorbed ruthenium-containing precursor reacts with the adsorbed reducing gas to form the ruthenium layer on the substrate.
    Type: Grant
    Filed: August 4, 2003
    Date of Patent: September 4, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Mei Chang, Seshadri Ganguli, Nirmalya Maity
  • Patent number: 7265048
    Abstract: A method and apparatus for forming layers on a substrate comprising depositing a metal seed layer on a substrate surface having apertures, depositing a transition metal layer over the copper seed layer, and depositing a bulk metal layer over the transition metal layer. Also a method and apparatus for forming a via through a dielectric to reveal metal at the base of the via, depositing a transition metal layer, and depositing a first metal layer on the transition metal layer. Additionally, a method and apparatus for depositing a transition metal layer on an exposed metal surface, and depositing a layer thereover selected from the group consisting of a capping layer and a low dielectric constant layer.
    Type: Grant
    Filed: March 1, 2005
    Date of Patent: September 4, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Hua Chung, Seshadri Ganguli, Christophe Marcadal, Jick M. Yu
  • Publication number: 20070202254
    Abstract: Embodiments of the invention described herein generally provide methods and apparatuses for forming cobalt silicide layers, metallic cobalt layers, and other cobalt-containing materials. In one embodiment, a method for forming a cobalt silicide containing material on a substrate is provided which includes exposing a substrate to at least one preclean process to expose a silicon-containing surface, depositing a cobalt silicide material on the silicon-containing surface, depositing a metallic cobalt material on the cobalt silicide material, and depositing a metallic contact material on the substrate. In another embodiment, a method includes exposing a substrate to at least one preclean process to expose a silicon-containing surface, depositing a cobalt silicide material on the silicon-containing surface, expose the substrate to an annealing process, depositing a barrier material on the cobalt silicide material, and depositing a metallic contact material on the barrier material.
    Type: Application
    Filed: April 11, 2007
    Publication date: August 30, 2007
    Inventors: SESHADRI GANGULI, SCHUBERT CHU, MEI CHANG, SANG-HO YU, KEVIN MORAES, SEE-ENG PHAN
  • Publication number: 20070128863
    Abstract: Embodiments of the invention provide an apparatus configured to form a material during an atomic layer deposition (ALD) process, such as a plasma-enhanced ALD (PE-ALD) process. In one embodiment, a lid assembly for conducting a vapor deposition process within a process chamber is provided which includes an insulation cap and a plasma screen. In one example, the insulation cap has a centralized channel configured to flow a first process gas from an upper surface to an expanded channel and an outer channel configured to flow a second process gas from an upper surface to a groove which is encircling the expanded channel. In one example, the plasma screen has an upper surface containing an inner area with a plurality of holes and an outer area with a plurality of slots. The insulation cap may be positioned on top of the plasma screen to form a centralized gas region with the expanded channel and a circular gas region with the groove.
    Type: Application
    Filed: November 6, 2006
    Publication date: June 7, 2007
    Inventors: Paul Ma, Kavita Shah, Dien-Yeh Wu, Seshadri Ganguli, Christophe Marcadal, Frederick Wu, Schubert Chu
  • Publication number: 20070128862
    Abstract: Embodiments of the invention provide an apparatus configured to form a material during an atomic layer deposition (ALD) process, such as a plasma-enhanced ALD (PE-ALD) process. In one embodiment, a showerhead assembly comprises a showerhead and a plasma baffle that are used to disperse process gases within a plasma-enhanced vapor deposition chamber. The showerhead plate comprises an inner area configured to position the plasma baffle therein and an outer area which has a plurality of holes for emitting a process gas. The plasma baffle comprises a conical nose disposed on an upper surface to receive another process gas, a lower surface to emit the process gas and a plurality of openings configured to flow the process gas from above the upper surface into a process region. The openings are preferably slots that are positioned at predetermined angle for emitting the process gas with a circular flow pattern.
    Type: Application
    Filed: November 6, 2006
    Publication date: June 7, 2007
    Inventors: Paul Ma, Kavita Shah, Dien-Yeh Wu, Seshadri Ganguli, Christophe Marcadal, Frederick Wu, Schubert Chu
  • Publication number: 20070128864
    Abstract: Embodiments of the invention provide a method for forming a material on a substrate during an atomic layer deposition (ALD) process, such as a plasma-enhanced ALD (PE-ALD) process. In one embodiment, a method is provided which includes flowing at least one process gas through at least one conduit to form a circular gas flow pattern, exposing a substrate to the circular gas flow pattern, sequentially pulsing at least one chemical precursor into the process gas and igniting a plasma from the process gas to deposit a material on the substrate. In one example, the circular gas flow pattern has circular geometry of a vortex, a helix, a spiral, or a derivative thereof. Materials that may be deposited by the method include ruthenium, tantalum, tantalum nitride, tungsten or tungsten nitride. Other embodiments of the invention provide an apparatus configured to form the material during the PE-ALD process.
    Type: Application
    Filed: November 6, 2006
    Publication date: June 7, 2007
    Inventors: PAUL MA, KAVITA SHAH, DIEN-YEH WU, SESHADRI GANGULI, CHRISTOPHE MARCADAL, FREDERICK WU, SCHUBERT CHU
  • Publication number: 20070119370
    Abstract: Embodiments of the invention provide an apparatus configured to form a material during an atomic layer deposition (ALD) process, such as a plasma-enhanced ALD (PE-ALD) process. In one embodiment, a process chamber is configured to expose a substrate to a sequence of gases and plasmas during a PE-ALD process. The process chamber comprises components that are capable of being electrically insulated, electrically grounded or RF energized. In one example, a chamber body and a gas manifold assembly are grounded and separated by electrically insulated components, such as an insulation cap, a plasma screen insert and an isolation ring. A showerhead, a plasma baffle and a water box are positioned between the insulated components and become RF hot when activated by a plasma generator. Other embodiments of the invention provide deposition processes to form layers of materials within the process chamber.
    Type: Application
    Filed: November 6, 2006
    Publication date: May 31, 2007
    Inventors: PAUL MA, Kavita Shah, Dien-Yeh Wu, Seshadri Ganguli, Christophe Marcadal, Frederick Wu, Schubert Chu
  • Publication number: 20070119371
    Abstract: Embodiments of the invention provide an apparatus configured to form a material during an atomic layer deposition (ALD) process, such as a plasma-enhanced ALD (PE-ALD) process. In one embodiment, a lid assembly is configured to expose a substrate to a sequence of gases and plasmas during a PE-ALD process. The lid assembly comprises components that are capable of being electrically insulated, electrically grounded or RF energized. In one example, the lid assembly comprises a grounded gas manifold assembly positioned above electrically insulated components, such as an insulation cap, a plasma screen insert and an isolation ring. A showerhead, a plasma baffle and a water box are positioned between the insulated components and become RF hot when activated by a plasma generator. Other embodiments of the invention provide deposition processes to form layers of materials within the process chamber.
    Type: Application
    Filed: November 6, 2006
    Publication date: May 31, 2007
    Inventors: PAUL MA, Kavita Shah, Dien-Yeh Wu, Seshadri Ganguli, Christophe Marcadal, Frederick Wu, Schubert Chu
  • Publication number: 20070110898
    Abstract: In one embodiment, an apparatus for generating a gaseous chemical precursor used in a vapor deposition processing system is provided which includes a canister comprising a sidewall, a top, and a bottom encompassing an interior volume therein, an inlet port and an outlet port in fluid communication with the interior volume, and an inlet tube extending from the inlet port into the canister. The apparatus further may contain a plurality of baffles within the interior volume extending between the top and the bottom of the canister, and a precursor slurry contained within the interior volume, wherein the precursor slurry contains a solid precursor material and a thermally conductive material that is unreactive towards the solid precursor material. In one example, the solid precursor material solid precursor material is pentakis(dimethylamino) tantalum.
    Type: Application
    Filed: December 19, 2006
    Publication date: May 17, 2007
    Inventors: Seshadri Ganguli, Ling Chen, Vincent Ku
  • Publication number: 20070089817
    Abstract: A method and apparatus for generating gas for a processing system is provided. In one embodiment, an apparatus for generating gas for a processing system includes a canister having at least one baffle disposed between two ports and containing a precursor material. The precursor material is adapted to produce a gas vapor when heated to a defined temperature at a defined pressure. The baffle forces a carrier gas to travel an extended mean path between the inlet and outlet ports. In another embodiment, an apparatus for generating gas includes a canister having a tube that directs a carrier gas flowing into the canister away from a precursor material disposed within the canister.
    Type: Application
    Filed: November 28, 2006
    Publication date: April 26, 2007
    Inventors: Seshadri Ganguli, Ling Chen, Vincent Ku
  • Publication number: 20070077750
    Abstract: Embodiments of the invention provide a method for depositing ruthenium materials on a substrate by various vapor deposition processes, such as atomic layer deposition (ALD) and plasma-enhanced ALD (PE-ALD). In one aspect, the process has little or no initiation delay and maintains a fast deposition rate while forming a ruthenium material. The ruthenium material may be deposited with good step coverage, strong adhesion, and contains a low carbon concentration for high electrical conductivity. The method for depositing the ruthenium material on a substrate generally includes sequentially exposing the substrate to a pyrrolyl ruthenium precursor and a reagent during the ALD process. The pyrrolyl ruthenium precursor contains ruthenium and at least one pyrrolyl ligand. In some examples, the reagent may contain a plasma of ammonia, nitrogen, or hydrogen during a PE-ALD process. In other examples, a reducing gas may be used during a thermal ALD process.
    Type: Application
    Filed: September 6, 2006
    Publication date: April 5, 2007
    Inventors: Paul Ma, Kavita Shah, Dien-Yeh Wu, Seshadri Ganguli, Christophe Marcadal, Frederick Wu, Schubert Chu
  • Publication number: 20070067609
    Abstract: Embodiments of the present invention are directed to an apparatus for generating a precursor for a semiconductor processing system (320). The apparatus includes a canister (300) having a sidewall (402), a top portion and a bottom portion. The canister (300) defines an interior volume (438) having an upper region (418) and a lower region (434). In one embodiment, the apparatus further includes a heater (430) partially surrounding the canister (300). The heater (430) creates a temperature gradient between the upper region (418) and the lower region (434). Also claimed is a method of forming a barrier layer from purified pentakis(dimethylamido)tantalum, for example a tantalum nitride barrier layer by atomic layer deposition.
    Type: Application
    Filed: May 27, 2004
    Publication date: March 22, 2007
    Inventors: Ling Chen, Vincent Ku, Hua Chung, Christophe Marcadal, Seshadri Ganguli, Jenny Lin, Dien-Yeh Wu, Alan Ouye, Mei Chang
  • Publication number: 20070054487
    Abstract: Embodiments of the invention provide a method for depositing ruthenium materials on a substrate by various vapor deposition processes, such as atomic layer deposition (ALD) and plasma-enhanced ALD (PE-ALD). In one aspect, the process has little or no initiation delay and maintains a fast deposition rate while forming a ruthenium material. The ruthenium material may be deposited with good step coverage, strong adhesion, and contains a low carbon concentration for high electrical conductivity. The method for depositing the ruthenium material on a substrate generally includes sequentially exposing the substrate to a pyrrolyl ruthenium precursor and a reagent during the ALD process. The pyrrolyl ruthenium precursor contains ruthenium and at least one pyrrolyl ligand. In some examples, the reagent may contain a plasma of ammonia, nitrogen, or hydrogen during a PE-ALD process. In other examples, a reducing gas may be used during a thermal ALD process.
    Type: Application
    Filed: September 6, 2006
    Publication date: March 8, 2007
    Inventors: PAUL MA, KAVITA SHAH, DIEN-YEH WU, SESHADRI GANGULI, CHRISTOPHE MARCADAL, FREDERICK WU, SCHUBERT CHU
  • Patent number: 7186385
    Abstract: An apparatus for generating gas for a processing system is provided. In one embodiment, an apparatus for generating gas for a processing system includes a canister having at least one baffle disposed between two ports and containing a precursor material. The precursor material is adapted to produce a gas vapor when heated to a defined temperature at a defined pressure. The baffle forces a carrier gas to travel an extended mean path between the inlet and outlet ports. In another embodiment, an apparatus for generating gas includes a canister having a tube that directs a carrier gas flowing into the canister away from a precursor material disposed within the canister.
    Type: Grant
    Filed: July 17, 2002
    Date of Patent: March 6, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Seshadri Ganguli, Ling Chen, Vincent W. Ku
  • Publication number: 20060257295
    Abstract: Embodiments of an apparatus for generating a chemical precursor used in a vapor deposition processing system are provide which include a canister having a sidewall, a top, and a bottom forming an interior volume which is in fluid communication with an inlet port and an outlet port. The canister contains a plurality of baffles that extend from the bottom to an upper portion of the interior volume and form an extended mean flow path between the inlet port and the outlet port. In one embodiment, the baffles are contained on a prefabricated insert positioned on the bottom of the canister. In one example, an inlet tube may extend from the inlet port into the interior region and be positioned substantially parallel to the baffles. An outlet end of the inlet tube may be adapted to direct a gas flow away from the outlet port, such as towards the sidewall or top of the canister.
    Type: Application
    Filed: May 16, 2006
    Publication date: November 16, 2006
    Inventors: Ling Chen, Vincent Ku, Hua Chung, Christophe Marcadal, Seshadri Ganguli, Jenny Lin, Dien-Yeh Wu, Alan Ouye, Mei Chang
  • Publication number: 20060199372
    Abstract: A method and apparatus for forming layers on a substrate comprising depositing a metal seed layer on a substrate surface having apertures, depositing a transition metal layer over the copper seed layer, and depositing a bulk metal layer over the transition metal layer. Also a method and apparatus for forming a via through a dielectric to reveal metal at the base of the via, depositing a transition metal layer, and depositing a first metal layer on the transition metal layer. Additionally, a method and apparatus for depositing a transition metal layer on an exposed metal surface, and depositing a layer thereover selected from the group consisting of a capping layer and a low dielectric constant layer.
    Type: Application
    Filed: March 1, 2005
    Publication date: September 7, 2006
    Inventors: Hua Chung, Seshadri Ganguli, Christophe Marcadal, Jick Yu
  • Publication number: 20060153973
    Abstract: In one embodiment, a method for forming a material on a substrate is provided which includes positioning a substrate containing a dielectric material having vias formed therein within a process chamber, forming a barrier layer within the vias and on the dielectric material during a barrier deposition process, forming a ruthenium layer on the barrier layer during a ruthenium deposition process, and filling the vias with a copper material during a copper deposition process. The copper material may be formed by depositing a copper bulk layer over a copper seed layer. The method further provides that the ruthenium layer may be formed by an atomic layer deposition process (ALD) or a physical vapor deposition (PVD) process and the copper material may be formed by an electroless chemical plating process, an electroplating process, a chemical vapor deposition process, an ALD process and/or a PVD process.
    Type: Application
    Filed: January 20, 2006
    Publication date: July 13, 2006
    Inventors: Mei Chang, Seshadri Ganguli, Nirmalya Maity
  • Publication number: 20060128150
    Abstract: In one embodiment, a method for depositing a tungsten-containing film on a substrate is provided which includes depositing a barrier layer on the substrate, such as a titanium or tantalum containing barrier layer and depositing a ruthenium layer on the barrier layer. The method further includes depositing a tungsten nucleation layer on the ruthenium layer and depositing a tungsten bulk layer on the tungsten nucleation layer. The barrier layer, the ruthenium layer, the tungsten nucleation layer and the tungsten bulk layer are independently deposited by an ALD process, a CVD process or a PVD process, preferably by an ALD process. In some examples, the substrate is exposed to a soak process prior to depositing a subsequent layer, such as between the deposition of the barrier layer and the ruthenium layer, the ruthenium layer and the tungsten nucleation layer or the tungsten nucleation layer and the tungsten bulk layer.
    Type: Application
    Filed: December 10, 2004
    Publication date: June 15, 2006
    Inventors: Srinivas Gandikota, Madhu Moorthy, Amit Khandelwal, Avgerinos Gelatos, Mei Chang, Kavita Shah, Seshadri Ganguli