Patents by Inventor Shigemasa Kuwata

Shigemasa Kuwata has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240038997
    Abstract: A lithium metal battery cell has an electrolyte and an anode comprising an anode current collector and a thin film metal layer formed on the anode current collector, the thin film metal layer consisting of a metal that forms a solid solution with lithium metal. The thin film metal layer is configured to promote dense lithium deposition between the thin film metal layer and the electrolyte during charging.
    Type: Application
    Filed: July 29, 2022
    Publication date: February 1, 2024
    Inventors: Shigemasa Kuwata, Hideyuki Komatsu, Balachandran Gadaguntla Radhakrishnan, Maarten Sierhuis, Takuya Mishina, Kazuyuki Sakamoto
  • Publication number: 20240006600
    Abstract: A lithium metal battery cell has an electrolyte and an anode comprising an anode current collector and a composite interlayer formed on the anode current collector between the anode current collector and the electrolyte. The composite interlayer consists of conductive carbon and a metal additive, the composite interlayer configured to promote dense lithium deposition in the anode during charging. The metal additive in the composite interlayer is a metal that forms a solid solution with lithium metal.
    Type: Application
    Filed: June 30, 2022
    Publication date: January 4, 2024
    Inventors: Hideyuki Komatsu, Shigemasa Kuwata, Balachandran Gadaguntla Radhakrishnan, Maarten Sierhuis, Kazuyuki Sakamoto, Takuya Mishina
  • Patent number: 11715827
    Abstract: An all-solid-state battery comprises a lithium anode, a cathode, solid electrolyte and a protective layer between the solid electrolyte and the lithium anode. The protective layer comprises an ion-conducting material having an electrochemical stability window against lithium of at least 1.0 V, a lowest electrochemical stability being 0.0 V and a highest electrochemical stability being greater than 1.0 V. More particularly, when the solid electrolyte is LiSiCON, the electrochemical stability window is at least 1.5 V, the lowest electrochemical stability is 0.0 V and the highest electrochemical stability is greater than 1.5 V. When the solid electrolyte is sulfide-based, the electrochemical stability window is at least 2.0 V, the lowest electrochemical stability is 0.0 V and the highest electrochemical stability is greater than 2.0 V.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: August 1, 2023
    Assignee: Nissan North America, Inc.
    Inventors: Hideyuki Komatsu, Shigemasa Kuwata, Atsushi Ohma, Maarten Sierhuis, Xin Yang, Najamuddin Mirza Baig, Balachandran Gadaguntla Radhakrishnan, Shreyas Honrao, John Lawson, Mohit Rakesh Mehta
  • Publication number: 20230059842
    Abstract: A method of manufacturing an all-solid-state battery cell includes depositing an interlayer directly onto an anode current collector; depositing a solid electrolyte onto the interlayer opposite the anode current collector; forming a cathode on the solid electrolyte opposite the interlayer, wherein the cathode contains one or more lithium-containing compounds; and applying pressure to achieve uniform contact between layers. The manufactured all-solid-state battery cell is anode-free prior to charging. The interlayer is configured such that lithium metal is deposited between the interlayer and the anode current collector during charging, the interlayer prevents contact between the lithium metal and the solid electrolyte, and the interlayer has a greater density than a density of the solid electrolyte.
    Type: Application
    Filed: August 17, 2021
    Publication date: February 23, 2023
    Inventors: Hideyuki Komatsu, Shigemasa Kuwata, Balachandran Gadaguntla Radhakrishnan, Maarten Sierhuis, Naoki Ueda, Kazuyuki Sakamoto, John Lawson
  • Patent number: 11522213
    Abstract: A lithium battery comprises cathode active material comprising particles of a transition metal oxide, each particle coated in an ion-conducting material that has an electrochemical stability window against lithium of at least 2.2 V, a lowest electrochemical stability being less than 2.0 V and a highest electrochemical stability being greater than 4.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: December 6, 2022
    Assignees: Nissan North America, Inc., United States of America as Represented by the Administrator of NASA
    Inventors: Shigemasa Kuwata, Hideyuki Komatsu, Maarten Sierhuis, Balachandran Gadaguntla Radhakrishnan, Shreyas Honrao, John Lawson
  • Publication number: 20220263092
    Abstract: A lithium battery has a composite cathode comprising cathode active material including a transition metal oxide and an ion-conducting material having an electrochemical stability window against lithium of at least 2.2 V, a lowest electrochemical stability being less than 2.0 V and a highest electrochemical stability being greater than 4.2 V, the ion-conducting material selected from one or more of: Cs2LiCl3; Cs3Li2Cl5; Cs3LiCl4; CsLiCl2; Li2B3O4F3; Li3AlF6; Li3ScCl6; Li3ScF6; Li3YF6; Li9Mg3P4O16F3; LiBF4; LiThF5; Na3Li3Al2F12; and NaLi2AlF6.
    Type: Application
    Filed: February 8, 2021
    Publication date: August 18, 2022
    Inventors: Shigemasa Kuwata, Hideyuki Komatsu, Maarten Sierhuis, Balachandran Gadaguntla Radhakrishnan, Shreyas Honrao, John Lawson
  • Publication number: 20220255119
    Abstract: A lithium battery comprises cathode active material comprising particles of a transition metal oxide, each particle coated in an ion-conducting material that has an electrochemical stability window against lithium of at least 2.2 V, a lowest electrochemical stability being less than 2.0 V and a highest electrochemical stability being greater than 4.
    Type: Application
    Filed: February 8, 2021
    Publication date: August 11, 2022
    Inventors: Shigemasa Kuwata, Hideyuki Komatsu, Maarten Sierhuis, Balachandran Gadaguntla Radhakrishnan, Shreyas Honrao, John Lawson
  • Publication number: 20220255078
    Abstract: An all-solid-state battery comprises a lithium anode, a cathode, solid electrolyte and a protective layer between the solid electrolyte and the lithium anode. The protective layer comprises an ion-conducting material having an electrochemical stability window against lithium of at least 1.0 V, a lowest electrochemical stability being 0.0 V and a highest electrochemical stability being greater than 1.0 V. More particularly, when the solid electrolyte is LiSiCON, the electrochemical stability window is at least 1.5 V, the lowest electrochemical stability is 0.0 V and the highest electrochemical stability is greater than 1.5 V. When the solid electrolyte is sulfide-based, the electrochemical stability window is at least 2.0 V, the lowest electrochemical stability is 0.0 V and the highest electrochemical stability is greater than 2.0 V.
    Type: Application
    Filed: February 8, 2021
    Publication date: August 11, 2022
    Inventors: Hideyuki Komatsu, Shigemasa Kuwata, Atsushi Ohma, Maarten Sierhuis, Xin Yang, Najamuddin Mirza Baig, Balachandran Gadaguntla Radhakrishnan, Shreyas Honrao, John Lawson, Mohit Rakesh Mehta
  • Publication number: 20210098084
    Abstract: A method for screening materials may include obtaining materials from a database. The method may include screening the materials to obtain a one or more screened materials. The method may include generating a training set based on the screened materials, validated experimental data, or both. The method may include establishing a machine learning screening model based on the training set, one or more target parameters, or both. The method may include applying the machine learning screening model to uncharacterized materials. The method may include outputting one or more materials having characteristics matching the target parameters.
    Type: Application
    Filed: September 30, 2019
    Publication date: April 1, 2021
    Inventors: Akiyoshi Park, Taehee Han, Shigemasa Kuwata, Maarten Sierhuis, Xin Yang, Atsushi Ohma, Balachandran Gadaguntla Radhakrishnan, Shreyas Honrao, John Lawson, Najamuddin Mirza Baig, Mohit Rakesh Mehta
  • Patent number: 10707497
    Abstract: A fuel cell includes a membrane electrode assembly constituted of an electrolyte membrane and an electrode layer, a frame portion disposed along an outer periphery of the membrane electrode assembly, and separators that include gas flow passages to supply the membrane electrode assembly with fuel gas, wherein the membrane electrode assembly is interposed by a pair of the separators, and the separators include adhesion regions bonded to the frame portion via an adhesive, and reduced portions where distances between the separators and the frame portion are shorter than distances between the separators and the frame portion at other adhesion regions in the adhesion regions.
    Type: Grant
    Filed: July 3, 2015
    Date of Patent: July 7, 2020
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Shigemasa Kuwata, Takanori Oku, Mitsutaka Abe
  • Patent number: 10361445
    Abstract: A microporous layer sheet for a fuel cell according to the present invention includes at least two microporous layers, which are stacked on a gas diffusion layer substrate, and contain a carbon material and a binder. Then, the microporous layer sheet for a fuel cell is characterized in that a content of the binder in the microporous layer as a first layer located on the gas diffusion layer substrate side is smaller than contents of the binder in the microporous layers other than the first layer. The microporous layer sheet for a fuel cell, which is as described above, can ensure gas permeability and drainage performance without lowering strength. Hence, the microporous layer sheet for a fuel cell, which is as described above, can contribute to performance enhancement of a polymer electrolyte fuel cell by application thereof to a gas diffusion layer.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: July 23, 2019
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Shigemasa Kuwata, Yozo Okuyama, Kazufumi Kodama
  • Patent number: 10147954
    Abstract: A positive electrode (10) for an air cell of the present invention includes: a catalyst layer (11) composed of a porous layer containing electrical conductive carbon (1), a binder (2), and a catalyst component (3); and a fluid-tight gas-permeable layer (12) composed of a porous layer containing an electrical conductive carbon (1a) and a binder (2). The fluid-tight gas-permeable layer is stacked on the catalyst layer. This configuration can facilitate series connection of the air cells while preventing electrolysis solution from leaking out of a positive electrode. It is therefore possible to enhance the manufacturing efficiency and handleability of the air cells.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: December 4, 2018
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Yoshiko Tsukada, Kazufumi Kodama, Shigemasa Kuwata, Atsushi Miyazawa
  • Patent number: 10128514
    Abstract: A fuel cell metal separator structure includes a first separator in contact with a first membrane electrode assembly and a second separator in contact with a second membrane electrode assembly. In the stacking direction of the first separator and the second separator and the membrane electrode assemblies, in an reaction area formed between the two membrane electrode assemblies, an electrically conductive member is put between the first separator and the second separator, and in the sealing portion on a periphery of the membrane electrode assembly, the first separator and second separator are in direct contact with each other so that a space for sealing is expanded due to the increased depth of the sealing grooves.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: November 13, 2018
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Takanori Oku, Shigemasa Kuwata
  • Patent number: 10109877
    Abstract: A micro porous layer and a catalyst layer are integrated into a sheet so that a fuel cell electrode sheet is formed. The electrode sheet is obtained by applying an MPL ink containing a carbon material and a binder to a supporting sheet and heat-treating the ink, and applying a catalyst ink containing a catalyst to the obtained micro porous sheet and drying it. An electrode assembly in which the electrode sheets is laminated onto both sides of a solid polymer electrolyte membrane, is obtained by laminating the electrode sheets formed on the supporting sheets to the solid polymer electrolyte membrane, and thereafter peeling off the supporting sheets.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: October 23, 2018
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Norifumi Horibe, Shigemasa Kuwata, Kazufumi Kodama, Masaya Yamamoto
  • Publication number: 20180226660
    Abstract: A fuel cell includes a membrane electrode assembly constituted of an electrolyte membrane and an electrode layer, a frame portion disposed along an outer periphery of the membrane electrode assembly, and separators that include gas flow passages to supply the membrane electrode assembly with fuel gas, wherein the membrane electrode assembly is interposed by a pair of the separators, and the separators include adhesion regions bonded to the frame portion via an adhesive, and reduced portions where distances between the separators and the frame portion are shorter than distances between the separators and the frame portion at other adhesion regions in the adhesion regions.
    Type: Application
    Filed: July 3, 2015
    Publication date: August 9, 2018
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Shigemasa KUWATA, Takanori Oku, Mitsutaka Abe
  • Publication number: 20180159147
    Abstract: A fuel cell metal separator structure includes a first separator in contact with a first membrane electrode assembly and a second separator in contact with a second membrane electrode assembly. In the stacking direction of the first separator and the second separator and the membrane electrode assemblies, in an reaction area formed between the two membrane electrode assemblies, an electrically conductive member is put between the first separator and the second separator, and in the sealing portion on a periphery of the membrane electrode assembly, the first separator and second separator are in direct contact with each other so that a space for sealing is expanded due to the increased depth of the sealing grooves.
    Type: Application
    Filed: June 2, 2016
    Publication date: June 7, 2018
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Takanori OKU, Shigemasa KUWATA
  • Patent number: 9793550
    Abstract: A gas diffusion layer (30) for a fuel cell includes: a gas diffusion layer substrate (31); and a microporous layer (32) containing a granular carbon material and scale-like graphite and formed on the gas diffusion layer substrate (31). The microporous layer (32) includes a concentrated region (32a) of the scale-like graphite that is formed into a belt-like shape extending in a direction approximately parallel to a junction surface (31a) between the microporous layer (32) and the gas diffusion layer substrate (31). Accordingly, both resistance to dry-out and resistance to flooding, which are generally in a trade-off relationship, in the gas diffusion layer can be ensured so as to contribute to an increase in performance of a polymer electrolyte fuel cell.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: October 17, 2017
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Yozo Okuyama, Shigemasa Kuwata, Kazufumi Kodama
  • Patent number: 9601793
    Abstract: An electrolyte membrane-electrode assembly comprises a polymer electrolyte membrane; a cathode catalyst layer and a cathode gas diffusion layer including a cathode micro porous layer and a cathode gas diffusion layer substrate, arranged in order on one side of the polymer electrolyte membrane, and an anode catalyst layer and an anode gas diffusion layer including an anode micro porous layer and an anode gas diffusion layer substrate, arranged in order on the other side of the polymer electrolyte membrane. A relative gas diffusion coefficient of the anode micro porous layer is smaller than a relative gas diffusion coefficient of the cathode micro porous layer by an amount equal to or greater than 0.05[?].
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: March 21, 2017
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Shigemasa Kuwata, Yozo Okuyama, Kazufumi Kodama
  • Patent number: 9325022
    Abstract: A gas diffusion layer for a fuel cell includes a gas diffusion layer substrate and a microporous layer formed on the surface of the gas diffusion layer substrate. The microporous layer is formed into a sheet-like shape including a binder and a carbon material containing at least scale-like graphite, and the sheet-like microporous layer is attached to the gas diffusion layer substrate. The gas diffusion layer for a fuel cell having such a configuration, prevents the components included in the microporous layer from entering the gas diffusion layer substrate, so as to ensure gas permeability. In addition, the scale-like graphite contained in the microporous layer as an electrically conductive material improves electrical conductivity and gas permeability. Accordingly, the gas diffusion layer contributes to an improvement in performance of a polymer electrolyte fuel cell.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: April 26, 2016
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Yozo Okuyama, Shigemasa Kuwata, Kazufumi Kodama
  • Publication number: 20150349367
    Abstract: A micro porous layer and a catalyst layer are integrated into a sheet so that a fuel cell electrode sheet is formed. The electrode sheet is obtained by applying an MPL ink containing a carbon material and a binder to a supporting sheet and heat-treating the ink, and applying a catalyst ink containing a catalyst to the obtained micro porous sheet and drying it. An electrode assembly in which the electrode sheets is laminated onto both sides of a solid polymer electrolyte membrane, is obtained by laminating the electrode sheets formed on the supporting sheets to the solid polymer electrolyte membrane, and thereafter peeling off the supporting sheets.
    Type: Application
    Filed: November 15, 2013
    Publication date: December 3, 2015
    Inventors: Norifumi HORIBE, Shigemasa KUWATA, Kazufumi KODAMA, Masaya YAMAMOTO