Patents by Inventor Shigemasa Kuwata

Shigemasa Kuwata has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150349367
    Abstract: A micro porous layer and a catalyst layer are integrated into a sheet so that a fuel cell electrode sheet is formed. The electrode sheet is obtained by applying an MPL ink containing a carbon material and a binder to a supporting sheet and heat-treating the ink, and applying a catalyst ink containing a catalyst to the obtained micro porous sheet and drying it. An electrode assembly in which the electrode sheets is laminated onto both sides of a solid polymer electrolyte membrane, is obtained by laminating the electrode sheets formed on the supporting sheets to the solid polymer electrolyte membrane, and thereafter peeling off the supporting sheets.
    Type: Application
    Filed: November 15, 2013
    Publication date: December 3, 2015
    Inventors: Norifumi HORIBE, Shigemasa KUWATA, Kazufumi KODAMA, Masaya YAMAMOTO
  • Publication number: 20150086883
    Abstract: A positive electrode (10) for an air cell of the present invention includes: a catalyst layer (11) composed of a porous layer containing electrical conductive carbon (1), a binder (2), and a catalyst component (3); and a fluid-tight gas-permeable layer (12) composed of a porous layer containing an electrical conductive carbon (1a) and a binder (2). The fluid-tight gas-permeable layer is stacked on the catalyst layer. This configuration can facilitate series connection of the air cells while preventing electrolysis solution from leaking out of a positive electrode. It is therefore possible to enhance the manufacturing efficiency and handleability of the air cells.
    Type: Application
    Filed: March 8, 2013
    Publication date: March 26, 2015
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Yoshiko Tsukada, Kazufumi Kodama, Shigemasa Kuwata, Atsushi Miyazawa
  • Publication number: 20150024301
    Abstract: An electrolyte membrane-electrode assembly comprises a polymer electrolyte membrane; a cathode catalyst layer and a cathode gas diffusion layer including a cathode micro porous layer and a cathode gas diffusion layer substrate, arranged in order on one side of the polymer electrolyte membrane, and an anode catalyst layer and an anode gas diffusion layer including an anode micro porous layer and an anode gas diffusion layer substrate, arranged in order on the other side of the polymer electrolyte membrane. A relative gas diffusion coefficient of the anode micro porous layer is smaller than a relative gas diffusion coefficient of the cathode micro porous layer by an amount equal to or greater than 0.05[?].
    Type: Application
    Filed: March 5, 2013
    Publication date: January 22, 2015
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Shigemasa Kuwata, Yozo Okuyama, Kazufumi Kodama
  • Publication number: 20140134516
    Abstract: A gas diffusion layer (30) for a fuel cell includes: a gas diffusion layer substrate (31); and a microporous layer (32) containing a granular carbon material and scale-like graphite and formed on the gas diffusion layer substrate (31). The microporous layer (32) includes a concentrated region (32a) of the scale-like graphite that is formed into a belt-like shape extending in a direction approximately parallel to a junction surface (31a) between the microporous layer (32) and the gas diffusion layer substrate (31). Accordingly, both resistance to dry-out and resistance to flooding, which are generally in a trade-off relationship, in the gas diffusion layer can be ensured so as to contribute to an increase in performance of a polymer electrolyte fuel cell.
    Type: Application
    Filed: May 31, 2012
    Publication date: May 15, 2014
    Inventors: Yozo Okuyama, Shigemasa Kuwata, Kazufumi Kodama
  • Publication number: 20140127606
    Abstract: A microporous layer sheet for a fuel cell according to the present invention includes at least two microporous layers, which are stacked on a gas diffusion layer substrate, and contain a carbon material and a binder. Then, the microporous layer sheet for a fuel cell is characterized in that a content of the binder in the microporous layer as a first layer located on the gas diffusion layer substrate side is smaller than contents of the binder in the microporous layers other than the first layer. The microporous layer sheet for a fuel cell, which is as described above, can ensure gas permeability and drainage performance without lowering strength. Hence, the microporous layer sheet for a fuel cell, which is as described above, can contribute to performance enhancement of a polymer electrolyte fuel cell by application thereof to a gas diffusion layer.
    Type: Application
    Filed: May 31, 2012
    Publication date: May 8, 2014
    Inventors: Shigemasa Kuwata, Yozo Okuyama, Kazufumi Kodama
  • Publication number: 20140120451
    Abstract: A gas diffusion layer for a fuel cell includes a gas diffusion layer substrate and a microporous layer formed on the surface of the gas diffusion layer substrate. The microporous layer is formed into a sheet-like shape including a binder and a carbon material containing at least scale-like graphite, and the sheet-like microporous layer is attached to the gas diffusion layer substrate. The gas diffusion layer for a fuel cell having such a configuration, prevents the components included in the microporous layer from entering the gas diffusion layer substrate, so as to ensure gas permeability. In addition, the scale-like graphite contained in the microporous layer as an electrically conductive material improves electrical conductivity and gas permeability. Accordingly, the gas diffusion layer contributes to an improvement in performance of a polymer electrolyte fuel cell.
    Type: Application
    Filed: May 31, 2012
    Publication date: May 1, 2014
    Inventors: Yozo Okuyama, Shigemasa Kuwata, Kazufumi Kodama