Patents by Inventor Shinya Morimoto

Shinya Morimoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160134217
    Abstract: A motor includes a stator and a rotor that is arranged opposite to the stator through a predetermined air gap. The stator is such that a plurality of coils are wound around respective slots for each of a plurality of phases. In the stator, the number of turns of one of the plurality of coils is different from those of the others for each of the phases. In the rotor, among a plurality of magnetic poles formed of a plurality of permanent magnets arranged in a circumferential direction of a core, a magnetoresistance of at least one magnetic pole is different from those of the others.
    Type: Application
    Filed: January 20, 2016
    Publication date: May 12, 2016
    Applicants: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Shinya MORIMOTO, Sohji MURAKAMI, Noor Aamir BALOCH, Motomichi OHTO, Yong-Cheol KWON, Seung-Ki SUL
  • Patent number: 9300234
    Abstract: A rotary electric machine controller according to the present application includes: a superimposer for superimposing a high-frequency signal on one of a voltage and a current of a motor having saliency; an estimator for calculating an estimate value of a magnetic-pole position of a rotor included in the rotary electric machine based on a high-frequency component appearing in the other one of the voltage and the current of the rotary electric machine; a retainer for retaining information relating to a correction amount corresponding to the estimate value of the magnetic-pole position of the rotor; and a corrector for correcting the estimate value of the magnetic-pole position of the rotor based on the information relating to the correction amount.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: March 29, 2016
    Assignee: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Masanobu Kakihara, Shinya Morimoto
  • Patent number: 9236821
    Abstract: A controlling apparatus for an electric motor according to an embodiment includes a superposed component generator, an inverter, a current detector, and a magnetic pole position estimator. The superposed component generator generates, at a predetermined cycle, a superposed voltage reference of which vector is shifted by 90 degrees with respect to that of a superposed voltage reference previously generated, in a coordinate system that is set to a stator of the electric motor. The inverter outputs a driving voltage that is based on a driving voltage reference superposed with the superposed voltage reference to the electric motor. The current detector detects currents flowing into respective phases of the electric motor, and outputs the detected currents. The magnetic pole position estimator detects the magnetic pole position of the electric motor based on an amount of change in the detected currents at the predetermined cycle.
    Type: Grant
    Filed: August 11, 2014
    Date of Patent: January 12, 2016
    Assignee: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Takayuki Shiota, Shinya Morimoto, Hideaki Iura
  • Patent number: 9195223
    Abstract: A motor controller includes a position speed estimation section and a control section. The position speed estimation section outputs a motor estimated position and a motor estimated speed based on a position estimated error, which is a difference between a motor position of a motor and the motor estimated position. An observer modifier outputs an observer modification value based on the position estimated error. A nonlinear compensator outputs a compensation torque based on the position estimated error. An operator outputs an operation value based on the observer modification value and the compensation torque. A motor model outputs the motor estimated position and the motor estimated speed based on the operation value. The control section outputs a torque command based on the motor estimated position, the motor estimated speed, and a position command to control the motor.
    Type: Grant
    Filed: June 10, 2014
    Date of Patent: November 24, 2015
    Assignee: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Noor Aamir Baloch, Kozo Ide, Shinya Morimoto
  • Patent number: 9190935
    Abstract: A power regenerative converter includes: a power conversion unit configured to convert AC power supplied from an AC power supply into DC power and convert DC power into AC power to be supplied as regenerative electric power to the AC power supply; an LCL filter including a reactor unit having a plurality of reactors connected in series between the power conversion unit and the AC power supply, and capacitors each having one end connected to a series connection point of the reactors in the reactor unit; a drive control unit for controlling the power conversion unit based on an AC voltage command; and a voltage command compensation unit for calculating a compensation value in accordance with a capacitor voltage being a voltage at the series connection point of the reactors and adding the compensation value to the AC voltage command input to the drive control unit.
    Type: Grant
    Filed: April 10, 2013
    Date of Patent: November 17, 2015
    Assignee: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Yoshiyasu Takase, Kozo Ide, Shinya Morimoto, Hideaki Iura, Takahiro Saeki
  • Publication number: 20150280597
    Abstract: A power converting apparatus includes a power converter, a controller, and a filter. Further, the controller includes a command generator, an estimator, a voltage error calculator, and an output voltage controller. The command generator is configured to generate an output voltage command. The estimator is configured to estimate the output voltage based on an output current of the power converter. The voltage error calculator is configured to calculate a voltage difference between the output voltage command and the estimated output voltage. The output voltage controller is configured to control the output voltage to suppress a resonance of the filter based on the voltage difference.
    Type: Application
    Filed: March 24, 2015
    Publication date: October 1, 2015
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Yoshiyasu TAKASE, Shinya MORIMOTO, Kentaro INOMATA, Takashi TANAKA
  • Publication number: 20150280612
    Abstract: A power converter according to embodiments includes a boost circuit, a single-phase inverter, a current controller, and a power conversion controller. The current controller generates a voltage reference based on a difference between current output from the single-phase inverter and a current reference. The power conversion controller controls the single-phase inverter to generate a first portion of the AC voltage, and controls the boost circuit to generate a second portion of the AC voltage. The first portion corresponds to the voltage reference of which an absolute value is smaller than the voltage of the DC power supply. The second portion corresponds to the voltage reference of which an absolute value is greater than the voltage of the DC power supply.
    Type: Application
    Filed: March 20, 2015
    Publication date: October 1, 2015
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Kozo IDE, Tetsumi NARITA, Seiji FUJISAKI, Mamoru TAKAKI, Shinya MORIMOTO
  • Publication number: 20150270787
    Abstract: A power converter according to one embodiment includes a controller that switches between a boosting operation in a boost circuit and a pulse-width modulation operation in a single-phase inverter. The controller modifies an output from a voltage detection filter based on a delay compensating value for compensating a detection delay introduced by the voltage detection filter, when switching is performed the boosting operation in the boost circuit to the PWM operation in the single-phase inverter.
    Type: Application
    Filed: January 29, 2015
    Publication date: September 24, 2015
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Seiji FUJISAKI, Mamoru TAKAKI, Shinya MORIMOTO, Masato HIGUCHI
  • Publication number: 20150244298
    Abstract: A rotary electric machine control apparatus includes: a phase estimator configured to estimate a first estimated phase value based on a rotary electric machine current; a correction value storage configured to store correction information representing a plurality of second estimated phase values and a plurality of correction values; a first phase corrector configured to acquire, based on a second estimated phase value corresponding to the first estimated phase value, from the correction information, a correction value associated with the second estimated phase value, and configured to correct the second estimated phase values based on the correction value; a position controller configured to calculate a speed command based on a position command and the corrected second estimated phase value; and a speed controller configured to calculate a torque command value and a q-axis current command value based on the speed command and the corrected second estimated phase value.
    Type: Application
    Filed: August 4, 2014
    Publication date: August 27, 2015
    Inventors: Mamoru TAKAKI, Shinya MORIMOTO, Aamir Noor BALOCH, Masaki HISATSUNE, Masanobu KAKIHARA
  • Patent number: 9112414
    Abstract: Provided is a matrix converter including a power converter, a commutation controller, and a compensator. The power converter includes a plurality of bidirectional switches. The commutation controller performs one of a three-step commutation operation and a four-step commutation operation by the bidirectional switches as a switch source and the bidirectional switches as a switch destination when an input terminal to be connected to an output terminal is switched by on/off control of the bidirectional switches. The compensator compensates for an output voltage error generated when the input terminal to be connected to the output terminal is switched, based on a potential difference before and after the switching of the input terminal to be connected to the output terminal, an output current of the output terminal, and capacitance between input and output terminals of unidirectional switches.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: August 18, 2015
    Assignee: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Kentaro Inomata, Shinya Morimoto, Mamoru Takaki, Yoshiyasu Takase
  • Publication number: 20150207446
    Abstract: A rotary electric machine controller according to the present application includes: a superimposer for superimposing a high-frequency signal on one of a voltage and a current of a motor having saliency; an estimator for calculating an estimate value of a magnetic-pole position of a rotor included in the rotary electric machine based on a high-frequency component appearing in the other one of the voltage and the current of the rotary electric machine; a retainer for retaining information relating to a correction amount corresponding to the estimate value of the magnetic-pole position of the rotor; and a corrector for correcting the estimate value of the magnetic-pole position of the rotor based on the information relating to the correction amount.
    Type: Application
    Filed: April 24, 2014
    Publication date: July 23, 2015
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Masanobu KAKIHARA, Shinya MORIMOTO
  • Publication number: 20150137779
    Abstract: A matrix converter according to an embodiment includes a plurality of bidirectional switches disposed between an AC power source and an AC load, and a controller that controls the bidirectional switches. The controller corrects an output voltage reference based on an oscillation component of an input current and/or an input voltage from the AC power source.
    Type: Application
    Filed: January 26, 2015
    Publication date: May 21, 2015
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Yoshiyasu TAKASE, Hidenori HARA, Shinya MORIMOTO
  • Publication number: 20150115862
    Abstract: A motor control apparatus includes a position and speed estimator configured to output a new estimated motor position and an estimated motor speed based on a position estimation deviation that is a difference between an acquired motor position and an estimated motor position of a motor, and a controller configured to output a motor power command, which controls the motor, based on the estimated motor position, the estimated motor speed, and a position command. The position and speed estimator includes a motor model of the motor configured to output the estimated motor position and the estimated motor speed based on a predetermined calculation value, and a nonlinear compensator configured to output a compensation motor power based on the position estimation deviation to compensate an error of the motor model.
    Type: Application
    Filed: January 8, 2015
    Publication date: April 30, 2015
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Noor Aamir BALOCH, Kozo IDE, Shinya MORIMOTO
  • Publication number: 20150085552
    Abstract: A matrix converter includes a power converter and a controller. The power converter includes bidirectional switches each having a conducting direction controllable by switching elements. The bidirectional switches are disposed between input terminals coupled to phases of an AC power source and output terminals coupled to phases of a load. A first commutation controller performs commutation control based on a first commutation. A second commutation controller performs the commutation control based on a second commutation. A selector selects between the first and second commutation controllers and to perform the commutation control based on a vector of an output current or an output voltage from the power converter or a vector of an input voltage or an input current from the AC power source to the power converter.
    Type: Application
    Filed: September 25, 2014
    Publication date: March 26, 2015
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Kentaro INOMATA, Shinya MORIMOTO
  • Patent number: 8988027
    Abstract: A motor control apparatus according to the embodiment includes a rotational position estimating unit, a change amount estimating unit, and an inductance estimating unit. The rotational position estimating unit estimates a rotational position of a rotor from a motor parameter including a q-axis inductance of a motor on a basis of an output current to the motor and a voltage reference. The change amount estimating unit estimates a change amount of an output torque with respect to a current phase change of the motor corresponding to a high frequency signal whose frequency is higher than a drive frequency of the motor. The inductance estimating unit estimates an inductance value that obtains a maximum torque on a basis of the change amount as the q-axis inductance.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: March 24, 2015
    Assignee: Kabushiki Kaisha Yaskawa Denki
    Inventors: Shingo Fukumaru, Shinya Morimoto, Hideaki Iura, Akira Yamazaki
  • Publication number: 20150035458
    Abstract: A linear motor system includes a stator, a mover, and a controller. The stator includes a plurality of armature coil units arranged so as to be spaced apart from one another at certain intervals. The mover includes a permanent magnet. The controller is configured to sequentially select, as a power-feeding target, an armature coil unit opposing the mover from among the plurality of armature coil units, perform, for the power-feeding target, computation for power-feeding control on the basis of a speed command, and sequentially feed power to the armature coil unit. The controller includes a power-feeding-switching compensation function of performing switching compensation when the power-feeding target is switched to a next armature coil unit.
    Type: Application
    Filed: March 25, 2014
    Publication date: February 5, 2015
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Yoshiyasu TAKASE, Shinya MORIMOTO, Toru SHIKAYAMA, Minoru KOGA, Nobuhiro UMEDA
  • Publication number: 20140346984
    Abstract: A controlling apparatus for an electric motor according to an embodiment includes a superposed component generator, an inverter, a current detector, and a magnetic pole position estimator. The superposed component generator generates, at a predetermined cycle, a superposed voltage reference of which vector is shifted by 90 degrees with respect to that of a superposed voltage reference previously generated, in a coordinate system that is set to a stator of the electric motor. The inverter outputs a driving voltage that is based on a driving voltage reference superposed with the superposed voltage reference to the electric motor. The current detector detects currents flowing into respective phases of the electric motor, and outputs the detected currents. The magnetic pole position estimator detects the magnetic pole position of the electric motor based on an amount of change in the detected currents at the predetermined cycle.
    Type: Application
    Filed: August 11, 2014
    Publication date: November 27, 2014
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Takayuki SHIOTA, Shinya MORIMOTO, Hideaki IURA
  • Publication number: 20140292248
    Abstract: A motor controller includes a position speed estimation section and a control section. The position speed estimation section outputs a motor estimated position and a motor estimated speed based on a position estimated error, which is a difference between a motor position of a motor and the motor estimated position. An observer modifier outputs an observer modification value based on the position estimated error. A nonlinear compensator outputs a compensation torque based on the position estimated error. An operator outputs an operation value based on the observer modification value and the compensation torque. A motor model outputs the motor estimated position and the motor estimated speed based on the operation value. The control section outputs a torque command based on the motor estimated position, the motor estimated speed, and a position command to control the motor.
    Type: Application
    Filed: June 10, 2014
    Publication date: October 2, 2014
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Noor Aamir BALOCH, Kozo IDE, Shinya MORIMOTO
  • Publication number: 20140254230
    Abstract: Provided is a matrix converter including a power converter, a commutation controller, and a compensator. The power converter includes a plurality of bidirectional switches. The commutation controller performs one of a three-step commutation operation and a four-step commutation operation by the bidirectional switches as a switch source and the bidirectional switches as a switch destination when an input terminal to be connected to an output terminal is switched by on/off control of the bidirectional switches. The compensator compensates for an output voltage error generated when the input terminal to be connected to the output terminal is switched, based on a potential difference before and after the switching of the input terminal to be connected to the output terminal, an output current of the output terminal, and capacitance between input and output terminals of unidirectional switches.
    Type: Application
    Filed: March 11, 2014
    Publication date: September 11, 2014
    Applicant: Kabushiki Kaisha Yaskawa Denki
    Inventors: Kentaro INOMATA, Shinya MORIMOTO, Mamoru TAKAKI, Yoshiyasu TAKASE
  • Publication number: 20140246940
    Abstract: A motor includes a rotor including a rotor core provided with a plurality of permanent magnets in the circumferential direction and a stator including a stator core on which multi-phase stator coils are wound. The rotor has a structure in which the change pattern of magnetic properties of the rotor core or the permanent magnets changes in the circumferential direction, and the stator has a structure in which first and second stator coils of the stator coils are wound on the stator core for each phase in such a manner that passage of current is optionally switched, and when the passage of current is switched to the second stator coil, the distribution pattern of a magnetic field formed on the inner circumferential side by the stator has uniqueness over the whole circumference.
    Type: Application
    Filed: May 12, 2014
    Publication date: September 4, 2014
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Sohji MURAKAMI, Motomichi OHTO, Kentaro INOMATA, Shinya MORIMOTO, Kozo IDE