Patents by Inventor Shivkumar Chiruvolu

Shivkumar Chiruvolu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7384680
    Abstract: Methods are described that have the capability of producing submicron/nanoscale particles, in some embodiments dispersible, at high production rates. In some embodiments, the methods result in the production of particles with an average diameter less than about 75 nanometers that are produced at a rate of at least about 35 grams per hour. In other embodiments, the particles are highly uniform. These methods can be used to form particle collections and/or powder coatings. Powder coatings and corresponding methods are described based on the deposition of highly uniform submicron/nanoscale particles.
    Type: Grant
    Filed: July 15, 2002
    Date of Patent: June 10, 2008
    Assignee: NanoGram Corporation
    Inventors: Xiangxin Bi, Nobuyuki Kambe, Craig R. Horne, James T. Gardner, Ronald J. Mosso, Shivkumar Chiruvolu, Sujeet Kumar, William E. McGovern, Pierre J. DeMascarel, Robert B. Lynch
  • Publication number: 20080069945
    Abstract: Nanoscale particles, particle coatings/particle arrays and corresponding consolidated materials are described based on an ability to vary the composition involving a wide range of metal and/or metalloid elements and corresponding compositions. In particular, metalloid oxides and metal-metalloid compositions are described in the form of improved nanoscale particles and coatings formed from the nanoscale particles. Compositions comprising rare earth metals and dopants/additives with rare earth metals are described. Complex compositions with a range of host compositions and dopants/additives can be formed using the approaches described herein. The particle coating can take the form of particle arrays that range from collections of disbursable primary particles to fused networks of primary particles forming channels that reflect the nanoscale of the primary particles. Suitable materials for optical applications are described along with some optical devices of interest.
    Type: Application
    Filed: October 19, 2007
    Publication date: March 20, 2008
    Inventors: Craig Horne, Pierre DeMascarel, Christian Honeker, Benjamin Chaloner-Gill, Herman Lopez, Xiangxin Bi, Ronald Mosso, William McGovern, James Gardner, Sujeet Kumar, James Gilliam, Vince Pham, Eric Euvrard, Shivkumar Chiruvolu, Jesse Jur
  • Publication number: 20080026220
    Abstract: Methods are described that have the capability of producing submicron/nanoscale particles, in some embodiments dispersible, at high production rates. In some embodiments, the methods result in the production of particles with an average diameter less than about 75 nanometers that are produced at a rate of at least about 35 grams per hour. In other embodiments, the particles are highly uniform. These methods can be used to form particle collections and/or powder coatings. Powder coatings and corresponding methods are described based on the deposition of highly uniform submicron/nanoscale particles.
    Type: Application
    Filed: July 15, 2002
    Publication date: January 31, 2008
    Inventors: Xiangxin Bi, Nobuyuki Kambe, Craig Horne, James Gardner, Ronald Mosso, Shivkumar Chiruvolu, Sujeet Kumar, William McGovern, Pierre DeMascarel, Robert Lynch
  • Patent number: 7306845
    Abstract: Nanoscale particles, particle coatings/particle arrays and corresponding consolidated materials are described based on an ability to vary the composition involving a wide range of metal and/or metalloid elements and corresponding compositions. In particular, metalloid oxides and metal-metalloid compositions are described in the form of improved nanoscale particles and coatings formed from the nanoscale particles. Compositions comprising rare earth metals and dopants/additives with rare earth metals are described. Complex compositions with a range of host compositions and dopants/additives can be formed using the approaches described herein. The particle coating can take the form of particle arrays that range from collections of disbursable primary particles to fused networks of primary particles forming channels that reflect the nanoscale of the primary particles. Suitable materials for optical applications are described along with some optical devices of interest.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: December 11, 2007
    Assignee: NeoPhotonics Corporation
    Inventors: Craig R. Horne, Pierre J. DeMascarel, Christian C. Honeker, Benjamin Chaloner-Gill, Herman A. Lopez, Xiangxin Bi, Ronald J. Mosso, William E. McGovern, James T. Gardner, Sujeet Kumar, James A. Gilliam, Vince Pham, Eric Euvrard, Shivkumar Chiruvolu, Jesse Jur
  • Publication number: 20070215837
    Abstract: Collections of phosphor particles have achieved improved performance based on improved material properties, such as crystallinity. Display devices can be formed with these improved submicron phosphor particles. Improved processing methods contribute to the improved phosphor particles, which can have high crystallinity and a high degree of particle size uniformity. Dispersions and composites can be effectively formed from the powders of the submicron particle collections.
    Type: Application
    Filed: March 13, 2007
    Publication date: September 20, 2007
    Inventors: Shivkumar Chiruvolu, Weidong Li, Igor Altman, Hui Du, Nobuyuki Kambe, Ronald J. Mosso
  • Publication number: 20070212510
    Abstract: Thin semiconductor foils can be formed using light reactive deposition. These foils can have an average thickness of less than 100 microns. In some embodiments, the semiconductor foils can have a large surface area, such as greater than about 900 square centimeters. The foil can be free standing or releasably held on one surface. The semiconductor foil can comprise elemental silicon, elemental germanium, silicon carbide, doped forms thereof, alloys thereof or mixtures thereof. The foils can be formed using a release layer that can release the foil after its deposition. The foils can be patterned, cut and processed in other ways for the formation of devices. Suitable devices that can be formed form the foils include, for example, photovoltaic modules and display control circuits.
    Type: Application
    Filed: March 13, 2007
    Publication date: September 13, 2007
    Inventors: Henry Hieslmair, Ronald J. Mosso, Robert B. Lynch, Shivkumar Chiruvolu, William E. McGovern, Craig R. Horne, Narayan Solayappan, Ronald M. Cornell
  • Publication number: 20070003694
    Abstract: Methods involve in-flight processing of inorganic particles synthesized within the flow. Thus, the flow extends from an inlet connected to a reactant delivery system with inorganic particle precursors to a collector. The as formed inorganic particle can be modified with radiation and/or the application of a coating composition. Additional processing steps can be introduced as desired. Suitable apparatuses for in-flight processing can be based on addition of processing elements onto an inorganic synthesis reactor, such as a laser pyrolysis reactor.
    Type: Application
    Filed: May 22, 2006
    Publication date: January 4, 2007
    Inventors: Shivkumar Chiruvolu, Hui Du, William McGovern, Ronald Mosso, Nobuyuki Kambe
  • Publication number: 20060286378
    Abstract: Collections of composite particles comprise inorganic particles and another composition, such as a polymer and/or a coating composition. In some embodiments, the composite particles have small average particle sizes, such as no more than about 10 microns or no more than about 2.5 microns. The composite particles can have selected particle architectures. The inorganic particles can have compositions selected for particular properties. The composite particles can be effective for printing applications, for the formation of optical coatings, and other desirable applications.
    Type: Application
    Filed: May 22, 2006
    Publication date: December 21, 2006
    Inventors: Shivkumar Chiruvolu, Hui Du, William McGovern, Craig Horne, Ronald Mosso, Nobuyuki Kambe
  • Publication number: 20060147369
    Abstract: Methods are described that have the capability of producing submicron/nanoscale particles, in some embodiments dispersible, at high production rates. In some embodiments, the methods result in the production of particles with an average diameter less than about 75 nanometers that are produced at a rate of at least about 35 grams per hour. In other embodiments, the particles are highly uniform. These methods can be used to form particle collections and/or powder coatings. Powder coatings and corresponding methods are described based on the deposition of highly uniform submicron/nanoscale particles.
    Type: Application
    Filed: February 17, 2006
    Publication date: July 6, 2006
    Inventors: Xiangxin Bi, Nobuyuki Kambe, Craig Horne, James Gardner, Ronald Mosso, Shivkumar Chiruvolu, Sujeet Kumar, William McGovern, Pierre DeMascarel, Robert Lynch
  • Publication number: 20060134347
    Abstract: Methods for forming coated substrates can be based on depositing material from a flow onto a substrate in which the coating material is formed by a reaction within the flow. In some embodiments, the product materials are formed in a reaction driven by photon energy absorbed from a radiation beam. In additional or alternative embodiments, the flow with the product stream is directed at the substrate. The substrate may be moved relative to the flow. Coating materials can be formed with densities of 65 percent to 95 percent of the fully densified coating material with a very high level of coating uniformity.
    Type: Application
    Filed: December 20, 2004
    Publication date: June 22, 2006
    Inventors: Shivkumar Chiruvolu, Michael Chapin
  • Publication number: 20050264811
    Abstract: Three dimensional optical structures are described that can have various integrations between optical devices within and between layers of the optical structure. Optical turning elements can provide optical pathways between layers of optical devices. Methods are described that provide for great versatility on contouring optical materials throughout the optical structure. Various new optical devices are enabled by the improved optical processing approaches.
    Type: Application
    Filed: July 28, 2005
    Publication date: December 1, 2005
    Inventors: Xiangxin Bi, Elizabeth Nevis, Ronald Mosso, Michael Chapin, Shivkumar Chiruvolu, Sardar Khan, Sujeet Kumar, Herman Lopez, Nguyen Huy, Craig Horne, Michael Bryan, Eric Euvrard
  • Patent number: 6952504
    Abstract: Three dimensional optical structures are described that can have various integrations between optical devices within and between layers of the optical structure. Optical turning elements can provide optical pathways between layers of optical devices. Methods are described that provide for great versatility on contouring optical materials throughout the optical structure. Various new optical devices are enabled by the improved optical processing approaches.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: October 4, 2005
    Assignee: NeoPhotonics Corporation
    Inventors: Xiangxin Bi, Elizabeth Anne Nevis, Ronald J. Mosso, Michael Edward Chapin, Shivkumar Chiruvolu, Sardar Hyat Khan, Sujeet Kumar, Herman Adrian Lopez, Nguyen Tran The Huy, Craig Richard Horne, Michael A. Bryan, Eric Euvrard
  • Patent number: 6881490
    Abstract: Inorganic particle/polymer composites are described that involve chemical bonding between the elements of the composite. In some embodiments, the composite composition includes a polymer having side groups chemically bonded to inorganic particles. Furthermore, the composite composition can include chemically bonded inorganic particles and ordered copolymers. Various electrical, optical and electro-optical devices can be formed from the composites.
    Type: Grant
    Filed: April 24, 2003
    Date of Patent: April 19, 2005
    Assignee: NanoGram Corporation
    Inventors: Nobuyuki Kambe, Yigal Dov Blum, Benjamin Chaloner-Gill, Shivkumar Chiruvolu, Sujeet Kumar, David Brent MacQueen
  • Patent number: 6849334
    Abstract: Nanoscale particles, particle coatings/particle arrays and corresponding consolidated materials are described based on an ability to vary the composition involving a wide range of metal and/or metalloid elements and corresponding compositions. In particular, metalloid oxides and metal-metalloid compositions are described in the form of improved nanoscale particles and coatings formed from the nanoscale particles. Compositions comprising rare earth metals and dopants/additives with rare earth metals are described. Complex compositions with a range of host compositions and dopants/additives can be formed using the approaches described herein. The particle coating can take the form of particle arrays that range from collections of disbursable primary particles to fused networks of primary particles forming channels that reflect the nanoscale of the primary particles. Suitable materials for optical applications are described along with some optical devices of interest.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: February 1, 2005
    Assignee: NeoPhotonics Corporation
    Inventors: Craig R. Horne, Pierre J. DeMascarel, Christian C. Honeker, Benjamin Chaloner-Gill, Herman A. Lopez, Xiangxin Bi, Ronald J. Mosso, William E. McGovern, James T. Gardner, Sujeet Kumar, James A. Gilliam, Vince Pham, Eric Euvrard, Shivkumar Chiruvolu, Jesse Jur
  • Publication number: 20030228415
    Abstract: Light reactive deposition uses an intense light beam to form particles that are directly coated onto a substrate surface. In some embodiments, a coating apparatus comprising a noncircular reactant inlet, optical elements forming a light path, a first substrate, and a motor connected to the apparatus. The reactant inlet defines a reactant stream path. The light path intersects the reactant stream path at a reaction zone with a product stream path continuing from the reaction zone. The substrate intersects the product stream path. Also, operation of the motor moves the first substrate relative to the product stream. Various broad methods are described for using light driven chemical reactions to produce efficiently highly uniform coatings.
    Type: Application
    Filed: April 15, 2003
    Publication date: December 11, 2003
    Inventors: Xiangxin Bi, Ronald J. Mosso, Shivkumar Chiruvolu, Sujeet Kumar, James T. Gardner, Seung M. Lim, William E. McGovern
  • Publication number: 20030203205
    Abstract: Methods are described that have the capability of producing submicron/nanoscale particles, in some embodiments dispersible, at high production rates. In some embodiments, the methods result in the production of particles with an average diameter less than about 75 nanometers that are produced at a rate of at least about 35 grams per hour. In other embodiments, the particles are highly uniform. These methods can be used to form particle collections and/or powder coatings. Powder coatings and corresponding methods are described based on the deposition of highly uniform submicron/nanoscale particles.
    Type: Application
    Filed: July 15, 2002
    Publication date: October 30, 2003
    Inventors: Xiangxin Bi, Nobuyuki Kambe, Craig R. Horne, James T. Gardner, Ronald J. Mosso, Shivkumar Chiruvolu, Sujeet Kumar, William E. McGovern, Pierre J. DeMascarel, Robert B. Lynch
  • Patent number: 6599631
    Abstract: Inorganic particle/polymer composites are described that involve chemical bonding between the elements of the composite. In some embodiments, the composite composition includes a polymer having side groups chemically bonded to inorganic particles. Furthermore, the composite composition can include chemically bonded inorganic particles and ordered copolymers. Various electrical, optical and electro-optical devices can be formed from the composites.
    Type: Grant
    Filed: March 27, 2001
    Date of Patent: July 29, 2003
    Assignee: NanoGram Corporation
    Inventors: Nobuyuki Kambe, Yigal Do Blum, Benjamin Chaloner-Gill, Shivkumar Chiruvolu, Sujeet Kumar, David Brent MacQueen
  • Publication number: 20030117691
    Abstract: Three dimensional optical structures are described that can have various integrations between optical devices within and between layers of the optical structure. Optical turning elements can provide optical pathways between layers of optical devices. Methods are described that provide for great versatility on contouring optical materials throughout the optical structure. Various new optical devices are enabled by the improved optical processing approaches.
    Type: Application
    Filed: December 21, 2001
    Publication date: June 26, 2003
    Inventors: Xiangxin Bi, Elizabeth Anne Nevis, Ronald J. Mosso, Michael Edward Chapin, Shivkumar Chiruvolu, Sardar Hyat Khan, Sujeet Kumar, Herman Adrian Lopez, Nguyen Tran The Huy, Craig Richard Horne, Michael A. Bryan, Eric Euvrard
  • Publication number: 20030118841
    Abstract: Nanoscale particles, particle coatings/particle arrays and corresponding consolidated materials are described based on an ability to vary the composition involving a wide range of metal and/or metalloid elements and corresponding compositions. In particular, metalloid oxides and metal-metalloid compositions are described in the form of improved nanoscale particles and coatings formed from the nanoscale particles. Compositions comprising rare earth metals and dopants/additives with rare earth metals are described. Complex compositions with a range of host compositions and dopants/additives can be formed using the approaches described herein. The particle coating can take the form of particle arrays that range from collections of disbursable primary particles to fused networks of primary particles forming channels that reflect the nanoscale of the primary particles. Suitable materials for optical applications are described along with some optical devices of interest.
    Type: Application
    Filed: March 15, 2002
    Publication date: June 26, 2003
    Inventors: Craig R. Horne, Peirre J. DeMascarel, Christian C. Honeker, Benjamin Chaloner-Gill, Herman A. Lopez, Xiangxin Bi, Ronald J. Mosso, William E. McGovern, James T. Gardner, Sujeet Kumar, James A. Gilliam, Vince Pham, Eric Euvrard, Shivkumar Chiruvolu, Jesse Jur
  • Publication number: 20030077221
    Abstract: Collections of particles are described that include crystalline aluminum oxide selected from the group consisting of delta-Al2O3 and theta-Al2O3. The particles have an average diameter less than about 100 nm. The particles generally have correspondingly large BET surface areas. In certain embodiments, the particle collections are very uniform. In some embodiments, collections of particles include doped aluminum oxides particles with an average diameter less than about 500 nm. The collections of particles can be deposited as coatings. Methods are described for producing desired aluminum oxide particles.
    Type: Application
    Filed: October 1, 2001
    Publication date: April 24, 2003
    Inventors: Shivkumar Chiruvolu, Yu K. Fortunak