Patents by Inventor Shiyun Lin

Shiyun Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240118506
    Abstract: In one example, an optoelectronic module may include a stack assembly including an electrical integrated circuit and an optical integrated circuit electrically and mechanically coupled to one another, an interposer electrically and mechanically coupled to the stack assembly, and an optical connector to optically couple the optical integrated circuit with an array of optical fibers.
    Type: Application
    Filed: December 18, 2023
    Publication date: April 11, 2024
    Inventors: Gilles P. Denoyer, Daniel MAHGEREFTEH, Vipul Bhatt, Shiyun LIN, Brian Kim
  • Publication number: 20240106202
    Abstract: In one example, an optoelectronic assembly may include a laser array, an amplifier array, and a multimode interference coupler optically coupling the laser array and the amplifier array. The laser array may include at least one primary laser and at least one spare laser configured to be activated if the primary laser fails. The amplifier array may include at least two amplifiers configured to amplify optical signals received from the laser array.
    Type: Application
    Filed: September 29, 2023
    Publication date: March 28, 2024
    Inventors: Shiyun LIN, Tsurugi SUDO
  • Publication number: 20240094462
    Abstract: An integrated circuit including an optical waveguide is described. The optical waveguide includes cascaded Mach-Zehnder interferometers (MZI) filters. The cascaded MZI filters are used for multiplexing and/or demultiplexing. The cascaded MZI filters achieve a desired level of center waveguide accuracy. The center waveguide accuracy may be achieved by any one or more of the following: trimming the MZI filters to a target thickness, interleaving phase sections of the cascaded MZI filters, nonlinear tapers, compact directional couplers, dummification, and/or phase sections with widths selected for phase compensation.
    Type: Application
    Filed: September 16, 2022
    Publication date: March 21, 2024
    Inventors: Shiyun Lin, Near Margalit, Amit Khanna
  • Patent number: 11921298
    Abstract: A spot-size converter includes first and second waveguide structures. The first waveguide structure extends longitudinally along a waveguide axis from a first end to a second end and is configured to support a first optical mode at the first end. The second waveguide structure is formed within the first waveguide structure. The second waveguide structure extends longitudinally between the first end and the second end. The second waveguide structure is configured to support a second optical mode at the second end. The second optical mode has a different diameter than the first optical mode. The second waveguide structure includes a waveguide core that has a first cross-sectional area in a first plane normal to the waveguide axis at the first end and a second cross-sectional area in a second plane normal to the waveguide axis at the second end. The second cross-sectional area is larger than the first cross-sectional area.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: March 5, 2024
    Assignee: II-VI DELAWARE, INC.
    Inventors: Yasuhiro Matsui, Shiyun Lin, David Adams
  • Publication number: 20240036263
    Abstract: An optical coupler configured to couple light along a propagation direction is disclosed. The optical coupler includes a lower area. The lower area includes a waveguide including a first end, a second end, and an inversely tapered portion. The optical coupler includes an intermediary area arranged over, in a vertical direction, the lower area. The intermediary area includes two or more intermediary elements. The optical coupler includes an upper area arranged over the intermediary area. The upper area includes one or more upper elements.
    Type: Application
    Filed: July 29, 2022
    Publication date: February 1, 2024
    Applicants: Broadcom International Pte. Ltd., Broadcom International Pte. Ltd.
    Inventors: Nourhan Eid, Shiyun Lin, Naser Dalvand, Vivek Raghunathan
  • Patent number: 11886023
    Abstract: In one example, an optoelectronic module may include a stack assembly including an electrical integrated circuit and an optical integrated circuit electrically and mechanically coupled to one another, an interposer electrically and mechanically coupled to the stack assembly, and an optical connector to optically couple the optical integrated circuit with an array of optical fibers.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: January 30, 2024
    Assignee: II-VI DELAWARE, INC.
    Inventors: Gilles P. Denoyer, Daniel Mahgerefteh, Vipul Bhatt, Shiyun Lin, Brian Kim
  • Publication number: 20230361533
    Abstract: In an example embodiment, a system includes a first grating-coupled laser (GCL) that includes a first laser cavity optically coupled to a first transmit grating coupler configured to redirect horizontally-propagating first light, received from the first laser cavity, vertically downward and out of the first GCL. The system also includes a second GCL that includes a second laser cavity optically coupled to a second transmit grating coupler configured to transmit second light vertically downward and out of the second GCL. The system also includes a photonic integrated circuit (PIC) that includes a first receive grating coupler optically coupled to a first waveguide and configured to receive the first light and couple the first light into the first waveguide. The PIC also includes a second receive grating coupler optically coupled to a second waveguide and configured to receive the second light and couple the second light into the second waveguide.
    Type: Application
    Filed: July 19, 2023
    Publication date: November 9, 2023
    Inventors: Shiyun LIN, Daniel MAHGEREFTEH
  • Patent number: 11811198
    Abstract: In one example, an optoelectronic assembly may include a laser array, an amplifier array, and a multimode interference coupler optically coupling the laser array and the amplifier array. The laser array may include at least one primary laser and at least one spare laser configured to be activated if the primary laser fails. The amplifier array may include at least two amplifiers configured to amplify optical signals received from the laser array.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: November 7, 2023
    Assignee: II-VI DELAWARE, INC.
    Inventors: Shiyun Lin, Tsurugi Sudo
  • Publication number: 20230282527
    Abstract: A system may include a wafer that includes ICs and defines cavities. Each cavity may be formed in a BEOL layer of the wafer and proximate a different IC. The system may also include an interposer that includes a transparent layer configured to permit optical signals to pass through. The interposer may also include at least one waveguide located proximate the transparent layer. The at least one waveguide may be configured to adiabatically couple at least one optical signal out of the multiple ICs. Further, the interposer may include a redirecting element optically coupled to the at least one the waveguide. The redirecting element may be located proximate the transparent layer and may be configured to receive the at least one optical signal from the at least one waveguide. The redirecting element may also be configured to vertically redirect the at least one optical signal towards the transparent layer.
    Type: Application
    Filed: May 12, 2023
    Publication date: September 7, 2023
    Inventors: Shiyun LIN, Daniel MAHGEREFTEH, Bryan PARK, Jin-Hyoung LEE
  • Patent number: 11749968
    Abstract: In an example embodiment, a system includes a first grating-coupled laser (GCL) that includes a first laser cavity optically coupled to a first transmit grating coupler configured to redirect horizontally-propagating first light, received from the first laser cavity, vertically downward and out of the first GCL. The system also includes a second GCL that includes a second laser cavity optically coupled to a second transmit grating coupler configured to transmit second light vertically downward and out of the second GCL. The system also includes a photonic integrated circuit (PIC) that includes a first receive grating coupler optically coupled to a first waveguide and configured to receive the first light and couple the first light into the first waveguide. The PIC also includes a second receive grating coupler optically coupled to a second waveguide and configured to receive the second light and couple the second light into the second waveguide.
    Type: Grant
    Filed: June 29, 2022
    Date of Patent: September 5, 2023
    Assignee: II-VI DELAWARE, INC.
    Inventors: Shiyun Lin, Daniel Mahgerefteh
  • Patent number: 11688652
    Abstract: A system may include a wafer that includes ICs and defines cavities. Each cavity may be formed in a BEOL layer of the wafer and proximate a different IC. The system may also include an interposer that includes a transparent layer configured to permit optical signals to pass through. The interposer may also include at least one waveguide located proximate the transparent layer. The at least one waveguide may be configured to adiabatically couple at least one optical signal out of the multiple ICs. Further, the interposer may include a redirecting element optically coupled to the at least one the waveguide. The redirecting element may be located proximate the transparent layer and may be configured to receive the at least one optical signal from the at least one waveguide. The redirecting element may also be configured to vertically redirect the at least one optical signal towards the transparent layer.
    Type: Grant
    Filed: March 4, 2022
    Date of Patent: June 27, 2023
    Assignee: II-VI DELAWARE, INC.
    Inventors: Shiyun Lin, Daniel Mahgerefteh, Bryan Park, Jin-Hyoung Lee
  • Publication number: 20220329046
    Abstract: In an example embodiment, a system includes a first grating-coupled laser (GCL) that includes a first laser cavity optically coupled to a first transmit grating coupler configured to redirect horizontally-propagating first light, received from the first laser cavity, vertically downward and out of the first GCL. The system also includes a second GCL that includes a second laser cavity optically coupled to a second transmit grating coupler configured to transmit second light vertically downward and out of the second GCL. The system also includes a photonic integrated circuit (PIC) that includes a first receive grating coupler optically coupled to a first waveguide and configured to receive the first light and couple the first light into the first waveguide. The PIC also includes a second receive grating coupler optically coupled to a second waveguide and configured to receive the second light and couple the second light into the second waveguide.
    Type: Application
    Filed: June 29, 2022
    Publication date: October 13, 2022
    Inventors: Shiyun LIN, Daniel MAHGEREFTEH
  • Patent number: 11435522
    Abstract: A grating coupled laser (GCL) includes an active section and a passive section. The passive section is butt coupled to the active section to form a butt joint with the active section. The active section includes an active waveguide. The passive section includes a passive waveguide, a transmit grating coupler, and a top cladding. The passive waveguide is optically coupled end to end with the active waveguide and includes a first portion and a second portion. The first portion of the passive waveguide is positioned between the second portion of the passive waveguide and the active waveguide. The transmit grating coupler is optically coupled to the passive waveguide and includes grating teeth that extend upward from the second portion of the passive waveguide. The top cladding is positioned directly above the first portion of the passive waveguide and is absent directly above at least some of the transmit grating coupler.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: September 6, 2022
    Assignee: II-VI DELAWARE, INC.
    Inventors: Daniel Mahgerefteh, Shiyun Lin, Yasuhiro Matsui, Ding Wang, David Bruce Young
  • Patent number: 11404850
    Abstract: In an example embodiment, a system includes a first grating-coupled laser (GCL) that includes a first laser cavity optically coupled to a first transmit grating coupler configured to redirect horizontally-propagating first light, received from the first laser cavity, vertically downward and out of the first GCL. The system also includes a second GCL that includes a second laser cavity optically coupled to a second transmit grating coupler configured to transmit second light vertically downward and out of the second GCL. The system also includes a photonic integrated circuit (PIC) that includes a first receive grating coupler optically coupled to a first waveguide and configured to receive the first light and couple the first light into the first waveguide. The PIC also includes a second receive grating coupler optically coupled to a second waveguide and configured to receive the second light and couple the second light into the second waveguide.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: August 2, 2022
    Assignee: II-VI DELAWARE, INC.
    Inventors: Shiyun Lin, Daniel Mahgerefteh
  • Publication number: 20220189831
    Abstract: A system may include a wafer that includes ICs and defines cavities. Each cavity may be formed in a BEOL layer of the wafer and proximate a different IC. The system may also include an interposer that includes a transparent layer configured to permit optical signals to pass through. The interposer may also include at least one waveguide located proximate the transparent layer. The at least one waveguide may be configured to adiabatically couple at least one optical signal out of the multiple ICs. Further, the interposer may include a redirecting element optically coupled to the at least one the waveguide. The redirecting element may be located proximate the transparent layer and may be configured to receive the at least one optical signal from the at least one waveguide. The redirecting element may also be configured to vertically redirect the at least one optical signal towards the transparent layer.
    Type: Application
    Filed: March 4, 2022
    Publication date: June 16, 2022
    Inventors: Shiyun Lin, Daniel Mahgerefteh, Bryan Park, Jin-Hyoung Lee
  • Patent number: 11295994
    Abstract: A system may include a wafer that includes ICs and defines cavities. Each cavity may be formed in a BEOL layer of the wafer and proximate a different IC. The system may also include an interposer that includes a transparent layer configured to permit optical signals to pass through. The interposer may also include at least one waveguide located proximate the transparent layer. The at least one waveguide may be configured to adiabatically couple at least one optical signal out of the multiple ICs. Further, the interposer may include a redirecting element optically coupled to the at least one the waveguide. The redirecting element may be located proximate the transparent layer and may be configured to receive the at least one optical signal from the at least one waveguide. The redirecting element may also be configured to vertically redirect the at least one optical signal towards the transparent layer.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: April 5, 2022
    Assignee: II-VI DELAWARE, INC.
    Inventors: Shiyun Lin, Daniel Mahgerefteh, Bryan Park, Jin-Hyoung Lee
  • Publication number: 20220091426
    Abstract: A spot-size converter includes first and second waveguide structures. The first waveguide structure extends longitudinally along a waveguide axis from a first end to a second end and is configured to support a first optical mode at the first end. The second waveguide structure is formed within the first waveguide structure. The second waveguide structure extends longitudinally between the first end and the second end. The second waveguide structure is configured to support a second optical mode at the second end. The second optical mode has a different diameter than the first optical mode. The second waveguide structure includes a waveguide core that has a first cross-sectional area in a first plane normal to the waveguide axis at the first end and a second cross-sectional area in a second plane normal to the waveguide axis at the second end. The second cross-sectional area is larger than the first cross-sectional area.
    Type: Application
    Filed: September 22, 2020
    Publication date: March 24, 2022
    Inventors: Yasuhiro Matsui, Shiyun Lin, David Adams
  • Patent number: 11156789
    Abstract: An example system includes a grating coupled laser, a laser optical interposer (LOI), an optical isolator, and a light redirector. The grating coupled laser includes a laser cavity and a transmit grating optically coupled to the laser cavity. The transmit grating is configured to diffract light emitted by the laser cavity out of the grating coupled laser. The LOI includes an LOI waveguide with an input end and an output end. The optical isolator is positioned between the surface coupled edge emitting laser and the LOI. The light redirector is positioned to redirect the light, after the light passes through the optical isolator, into the LOI waveguide of the LOI.
    Type: Grant
    Filed: May 26, 2020
    Date of Patent: October 26, 2021
    Assignee: II-VI DELAWARE, INC.
    Inventors: Daniel Mahgerefteh, Jin-Hyoung Lee, Shiyun Lin
  • Patent number: 11086088
    Abstract: An optoelectronic assembly may include a photonic integrated circuit (PIC) with a top surface and a laser with a top surface and a bottom surface. The optoelectronic assembly may also include a housing configured to cooperate with the PIC to one or both of house and support one or more components. The housing may include a PIC mount including a first surface to interface with the top surface of the PIC, and a laser mount including a second surface to interface with the top or bottom surface of the laser. The first surface and the second surface may be parallel to each other.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: August 10, 2021
    Assignee: II-VI DELAWARE, INC.
    Inventors: Bernd Huebner, Tsurugi Sudo, Shiyun Lin
  • Patent number: 10992104
    Abstract: A system includes a grating coupled laser and a photonic integrated circuit (PIC). The grating coupled laser includes a first waveguide and a transmit grating coupler optically coupled to the first waveguide. The PIC includes a second waveguide and a receive grating coupler optically coupled to the second waveguide. The receive grating coupler is in optical alignment with the transmit grating coupler. The receive grating coupler includes a first grating and a second grating spaced apart from and above the first grating within the PIC.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: April 27, 2021
    Assignee: II-VI DELAWARE, INC.
    Inventors: Duanhua Kong, Daniel Mahgerefteh, Shiyun Lin, Yasuhiro Matsui