Patents by Inventor Shiyun Lin

Shiyun Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210109301
    Abstract: An example system includes a grating coupled laser, a laser optical interposer (LOI), an optical isolator, and a light redirector. The grating coupled laser includes a laser cavity and a transmit grating optically coupled to the laser cavity. The transmit grating is configured to diffract light emitted by the laser cavity out of the grating coupled laser. The LOI includes an LOI waveguide with an input end and an output end. The optical isolator is positioned between the surface coupled edge emitting laser and the LOI. The light redirector is positioned to redirect the light, after the light passes through the optical isolator, into the LOI waveguide of the LOI.
    Type: Application
    Filed: May 26, 2020
    Publication date: April 15, 2021
    Inventors: Daniel Mahgerefteh, Jin-Hyoung Lee, Shiyun Lin
  • Patent number: 10962721
    Abstract: An adiabatic optical coupler can include: a top tapered region that includes a top taper having two top tapered sides that taper from a first end region to a top tip region, the top taper having a first length; and a bottom tapered region under the top tapered region, wherein the bottom tapered region includes a bottom taper having two bottom tapered sides that taper from the first end region to a bottom tip region, the bottom taper having a second length that is longer than the first length. Another adiabatic optical coupler can include: a tapered region that includes a taper having two tapered sides that taper from an end region to a tip region; and a sub-wavelength grating (SWG) optically coupled with the tip region. Another adiabatic optical coupler can include a combination of these two adiabatic optical couplers.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: March 30, 2021
    Assignee: II-VI DELAWARE, INC.
    Inventors: Shiyun Lin, Daniel Mahgerefteh
  • Publication number: 20210048587
    Abstract: In one example, an optoelectronic module may include a stack assembly including an electrical integrated circuit and an optical integrated circuit electrically and mechanically coupled to one another, an interposer electrically and mechanically coupled to the stack assembly, and an optical connector to optically couple the optical integrated circuit with an array of optical fibers.
    Type: Application
    Filed: August 14, 2020
    Publication date: February 18, 2021
    Inventors: Gilles P. Denoyer, Daniel Mahgerefteh, Vipul Bhatt, Shiyun Lin, Brian Kim
  • Publication number: 20210028593
    Abstract: In one example, an optoelectronic assembly may include a laser array, an amplifier array, and a multimode interference coupler optically coupling the laser array and the amplifier array. The laser array may include at least one primary laser and at least one spare laser configured to be activated if the primary laser fails. The amplifier array may include at least two amplifiers configured to amplify optical signals received from the laser array.
    Type: Application
    Filed: June 19, 2020
    Publication date: January 28, 2021
    Inventors: Shiyun Lin, Tsurugi Sudo
  • Patent number: 10845669
    Abstract: In one example embodiment, an optical circuit for optical modulation of light may include an input waveguide including a first thickness, an optical modulator including a second thickness, and a tapered transition that optically couples the optical modulator and the input waveguide. The second thickness may be smaller than the first thickness. The tapered transition may adiabatically transform the optical mode of the input waveguide to the optical modulator.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: November 24, 2020
    Assignee: II-VI Delaware Inc.
    Inventors: Daniel Mahgerefteh, Ying Luo, Shiyun Lin, Jin-Hyoung Lee
  • Publication number: 20200333530
    Abstract: In an example embodiment, a system includes a first grating-coupled laser (GCL) that includes a first laser cavity optically coupled to a first transmit grating coupler configured to redirect horizontally-propagating first light, received from the first laser cavity, vertically downward and out of the first GCL. The system also includes a second GCL that includes a second laser cavity optically coupled to a second transmit grating coupler configured to transmit second light vertically downward and out of the second GCL. The system also includes a photonic integrated circuit (PIC) that includes a first receive grating coupler optically coupled to a first waveguide and configured to receive the first light and couple the first light into the first waveguide. The PIC also includes a second receive grating coupler optically coupled to a second waveguide and configured to receive the second light and couple the second light into the second waveguide.
    Type: Application
    Filed: April 9, 2020
    Publication date: October 22, 2020
    Inventors: Shiyun Lin, Daniel Mahgerefteh
  • Publication number: 20200257180
    Abstract: In one example embodiment, an optical circuit for optical modulation of light may include an input waveguide including a first thickness, an optical modulator including a second thickness, and a tapered transition that optically couples the optical modulator and the input waveguide. The second thickness may be smaller than the first thickness. The tapered transition may adiabatically transform the optical mode of the input waveguide to the optical modulator.
    Type: Application
    Filed: February 8, 2019
    Publication date: August 13, 2020
    Inventors: Daniel Mahgerefteh, Ying Luo, Shiyun Lin, Jin-Hyoung Lee
  • Patent number: 10684416
    Abstract: A polarization splitter rotator (PCR) can include a substrate, a primary through waveguide formed in the substrate having a custom tapered top region over a bottom region, a secondary cross waveguide formed in the substrate having a custom body shape, and a gap between the primary through waveguide and secondary cross waveguide. The custom tapered top region forces the TM mode to convert to a TE mode and cross into the secondary cross waveguide.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: June 16, 2020
    Assignee: II-VI Delaware Inc.
    Inventors: Shiyun Lin, Jin-Hyoung Lee
  • Patent number: 10663680
    Abstract: An example system includes a grating coupled laser, a laser optical interposer (LOI), an optical isolator, and a light redirector. The grating coupled laser includes a laser cavity and a transmit grating optically coupled to the laser cavity. The transmit grating is configured to diffract light emitted by the laser cavity out of the grating coupled laser. The LOI includes an LOI waveguide with an input end and an output end. The optical isolator is positioned between the surface coupled edge emitting laser and the LOI. The light redirector is positioned to redirect the light, after the light passes through the optical isolator, into the LOI waveguide of the LOI.
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: May 26, 2020
    Assignee: II-VI Delaware Inc.
    Inventors: Daniel Mahgerefteh, Jin-Hyoung Lee, Shiyun Lin
  • Publication number: 20200081204
    Abstract: A grating coupled laser (GCL) includes an active section and a passive section. The passive section is butt coupled to the active section to form a butt joint with the active section. The active section includes an active waveguide. The passive section includes a passive waveguide, a transmit grating coupler, and a top cladding. The passive waveguide is optically coupled end to end with the active waveguide and includes a first portion and a second portion. The first portion of the passive waveguide is positioned between the second portion of the passive waveguide and the active waveguide. The transmit grating coupler is optically coupled to the passive waveguide and includes grating teeth that extend upward from the second portion of the passive waveguide. The top cladding is positioned directly above the first portion of the passive waveguide and is absent directly above at least some of the transmit grating coupler.
    Type: Application
    Filed: September 12, 2019
    Publication date: March 12, 2020
    Inventors: Daniel Mahgerefteh, Shiyun Lin, Yasuhiro Matsui, Ding Wang, David Bruce Young
  • Publication number: 20200073065
    Abstract: An optoelectronic assembly may include a photonic integrated circuit (PIC) with a top surface and a laser with a top surface and a bottom surface. The optoelectronic assembly may also include a housing configured to cooperate with the PIC to one or both of house and support one or more components. The housing may include a PIC mount including a first surface to interface with the top surface of the PIC, and a laser mount including a second surface to interface with the top or bottom surface of the laser. The first surface and the second surface may be parallel to each other.
    Type: Application
    Filed: August 29, 2019
    Publication date: March 5, 2020
    Inventors: Bernd Huebner, Tsurugi Sudo, Shiyun Lin
  • Publication number: 20200064554
    Abstract: An adiabatic optical coupler can include: a top tapered region that includes a top taper having two top tapered sides that taper from a first end region to a top tip region, the top taper having a first length; and a bottom tapered region under the top tapered region, wherein the bottom tapered region includes a bottom taper having two bottom tapered sides that taper from the first end region to a bottom tip region, the bottom taper having a second length that is longer than the first length. Another adiabatic optical coupler can include: a tapered region that includes a taper having two tapered sides that taper from an end region to a tip region; and a sub-wavelength grating (SWG) optically coupled with the tip region. Another adiabatic optical coupler can include a combination of these two adiabatic optical couplers.
    Type: Application
    Filed: August 21, 2019
    Publication date: February 27, 2020
    Inventors: Shiyun Lin, Daniel Mahgerefteh
  • Publication number: 20200027798
    Abstract: A system may include a wafer that includes ICs and defines cavities. Each cavity may be formed in a BEOL layer of the wafer and proximate a different IC. The system may also include an interposer that includes a transparent layer configured to permit optical signals to pass through. The interposer may also include at least one waveguide located proximate the transparent layer. The at least one waveguide may be configured to adiabatically couple at least one optical signal out of the multiple ICs. Further, the interposer may include a redirecting element optically coupled to the at least one the waveguide. The redirecting element may be located proximate the transparent layer and may be configured to receive the at least one optical signal from the at least one waveguide. The redirecting element may also be configured to vertically redirect the at least one optical signal towards the transparent layer.
    Type: Application
    Filed: July 19, 2019
    Publication date: January 23, 2020
    Applicant: FINISAR CORPORATION
    Inventors: Shiyun LIN, Daniel MAHGEREFTEH, Bryan PARK, Jin-Hyoung LEE
  • Patent number: 10495813
    Abstract: In one example embodiment, an integrated silicon photonic wavelength division demultiplexer includes an input waveguide, an input port, a plurality of output waveguides, a plurality of output ports, a first auxiliary waveguide, and a plurality of auxiliary waveguides. The input waveguide may be formed in a first layer and having a first effective index n1. The input port may be optically coupled to the input waveguide. The output waveguides may be formed in the first layer and may have the first effective index n1. Each of the output ports may be optically coupled to a corresponding output waveguide. The first auxiliary waveguide may be formed in a second layer below the input waveguide in the first layer. The first auxiliary waveguide may have a second effective index n2 and may have two tapered ends, and n2 may be higher than n1.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: December 3, 2019
    Assignee: Finisar Corporation
    Inventors: Daniel Mahgerefteh, Ying Luo, Jin-Hyoung Lee, Shiyun Lin
  • Patent number: 10473858
    Abstract: An optical waveguide may include a silicon portion and a silicon nitride portion positioned over the silicon portion. The silicon portion may include a taper that decreases a width of the silicon portion. The optical waveguide may include a transition between a loaded single mode or multimode waveguide to a single mode waveguide. The silicon nitride portion may confine optical signals traveling through the optical waveguide in the silicon portion.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: November 12, 2019
    Assignee: Finisar Corporation
    Inventors: Daniel Mahgerefteh, Ying Luo, Shiyun Lin, Jin-Hyoung Lee
  • Publication number: 20190293878
    Abstract: An example system includes a grating coupled laser, a laser optical interposer (LOI), an optical isolator, and a light redirector. The grating coupled laser includes a laser cavity and a transmit grating optically coupled to the laser cavity. The transmit grating is configured to diffract light emitted by the laser cavity out of the grating coupled laser. The LOI includes an LOI waveguide with an input end and an output end. The optical isolator is positioned between the surface coupled edge emitting laser and the LOI. The light redirector is positioned to redirect the light, after the light passes through the optical isolator, into the LOI waveguide of the LOI.
    Type: Application
    Filed: June 11, 2019
    Publication date: September 26, 2019
    Inventors: Daniel Mahgerefteh, Jin-Hyoung Lee, Shiyun Lin
  • Publication number: 20190207362
    Abstract: A system includes a grating coupled laser and a photonic integrated circuit (PIC). The grating coupled laser includes a first waveguide and a transmit grating coupler optically coupled to the first waveguide. The PIC includes a second waveguide and a receive grating coupler optically coupled to the second waveguide. The receive grating coupler is in optical alignment with the transmit grating coupler. The receive grating coupler includes a first grating and a second grating spaced apart from and above the first grating within the PIC.
    Type: Application
    Filed: March 7, 2019
    Publication date: July 4, 2019
    Inventors: Duanhua Kong, Daniel Mahgerefteh, Shiyun Lin, Yasuhiro Matsui
  • Patent number: 10317632
    Abstract: An example system includes a grating coupled laser, a laser optical interposer (LOI), an optical isolator, and a light redirector. The grating coupled laser includes a laser cavity and a transmit grating optically coupled to the laser cavity. The transmit grating is configured to diffract light emitted by the laser cavity out of the grating coupled laser. The LOI includes an LOI waveguide with an input end and an output end. The optical isolator is positioned between the surface coupled edge emitting laser and the LOI. The light redirector is positioned to redirect the light, after the light passes through the optical isolator, into the LOI waveguide of the LOI.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: June 11, 2019
    Assignee: Finisar Corporation
    Inventors: Daniel Mahgerefteh, Jin-Hyoung Lee, Shiyun Lin
  • Patent number: 10302866
    Abstract: Various embodiments relate to polarization splitters. A polarization splitter may include a silicon nitride (SiN) waveguide core configured to receive an input light signal having a first polarization mode and a second polarization mode. The polarization splitter may further include a silicon (Si) slot waveguide core disposed proximate the SiN waveguide core. The Si slot waveguide core may include a tapered portion at a first end configured to couple the first polarization mode to the Si slot waveguide.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: May 28, 2019
    Assignee: Finisar Corporation
    Inventors: Shiyun Lin, Bryan Park
  • Publication number: 20190041578
    Abstract: In one example embodiment, an integrated silicon photonic wavelength division demultiplexer includes an input waveguide, an input port, a plurality of output waveguides, a plurality of output ports, a first auxiliary waveguide, and a plurality of auxiliary waveguides. The input waveguide may be formed in a first layer and having a first effective index n1. The input port may be optically coupled to the input waveguide. The output waveguides may be formed in the first layer and may have the first effective index n1. Each of the output ports may be optically coupled to a corresponding output waveguide. The first auxiliary waveguide may be formed in a second layer below the input waveguide in the first layer. The first auxiliary waveguide may have a second effective index n2 and may have two tapered ends, and n2 may be higher than n1.
    Type: Application
    Filed: August 3, 2018
    Publication date: February 7, 2019
    Inventors: Daniel Mahgerefteh, Ying Luo, Jin-Hyoung Lee, Shiyun Lin