Patents by Inventor Soon Ho Chang

Soon Ho Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7771879
    Abstract: Provided is a method of producing a nanoparticle-filled phase inversion polymer electrolyte. The method includes mixing a nanoparticle inorganic filler and a polymer with a solvent to obtain a slurry; casting the obtained slurry to form a membrane; obtaining an inorganic nanoparticle-filled porous polymer membrane by developing internal pores in the cast membrane using a phase inversion method; and impregnating the inorganic nanoparticle-filled porous polymer membrane with an electrolytic solution. The polymer electrolyte produced using the method can be used in a small lithium secondary battery having a high capacity, thereby providing an excellent battery property.
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: August 10, 2010
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Kwang Man Kim, Young Gi Lee, Nam Gyu Park, Soon Ho Chang, Kwang Sun Ryu
  • Patent number: 7399556
    Abstract: Provided are a composite polymer electrolyte for a lithium secondary battery in which a composite polymer matrix multi-layer structure composed of a plurality of polymer matrices with different pore sizes is impregnated with an electrolyte solution, and a method of manufacturing the same. Among the polymer matrices, a microporous polymer matrix with a smaller pore size contains a lithium cationic single-ion conducting inorganic filler, thereby enhancing ionic conductivity, the distribution uniformity of the impregnated electrolyte solution, and maintenance characteristics. The microporous polymer matrix containing the lithium cationic single-ion conducting inorganic filler is coated on a surface of a porous polymer matrix to form the composite polymer matrix multi-layer structure, which is then impregnated with the electrolyte solution, to manufacture the composite polymer electrolyte. The composite polymer electrolyte is used in a unit battery.
    Type: Grant
    Filed: April 1, 2005
    Date of Patent: July 15, 2008
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Young Gi Lee, Kwang Man Kim, Kwang Sun Ryu, Soon Ho Chang
  • Publication number: 20070102039
    Abstract: Provided are an electrolyte composition of a dye-sensitized solar cell, a manufacturing method thereof, and a dye-sensitized solar cell comprising the composition. The composition comprises a polyvinylidene fluoride (PVDF) based high polymer and titanium dioxide nanoparticles serving as an inorganic material based filler. Using the PVDF based high polymer in the composition can solidify the composition, and this solidification can contribute to the flexibility of a solar cell. Also, the inorganic material based filler, i.e., the titanium dioxide nanoparticles, can reinforce the collection and retention of an aqueous component comprising iodide ions, which are carriers within the electrolyte. Accordingly, compared to typical high polymer based electrolyte solutions, excellent photoelectric conversion efficiency can be achieved with the above electrolyte composition.
    Type: Application
    Filed: October 6, 2006
    Publication date: May 10, 2007
    Inventors: Kwang Man Kim, Man Gu Kang, Nam Gyu Park, Kwang-Sun Ryu, Soon Ho Chang
  • Patent number: 7211352
    Abstract: Provided are a composite polymer electrolyte for a lithium secondary battery that includes a composite polymer matrix structure having a single ion conductor-containing polymer matrix to enhance ionic conductivity and a method of manufacturing the same. The composite polymer electrolyte includes a first polymer matrix made of a first porous polymer with a first pore size; a second polymer matrix made of a single ion conductor, an inorganic material, and a second porous polymer with a second pore size smaller than the first pore size. The second polymer matrix is coated on a surface of the first polymer matrix. The composite polymer matrix structure can increase mechanical properties. The single ion conductor-containing porous polymer matrix of a submicro-scale can enhance ionic conductivity and the charge/discharge cycle stability.
    Type: Grant
    Filed: December 30, 2003
    Date of Patent: May 1, 2007
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Young Gi Lee, Kwang Sun Ryu, Soon Ho Chang
  • Patent number: 7157072
    Abstract: Provided is a cathode composition for lithium secondary battery that includes a lithium-chromium-titanium-manganese oxide that has the formula Li[Li(1-x)/3CrxTi(2/3)yMn2(1-x-y)/3]O2 where 0?x?0.3, 0?y?0.3 and 0.1?x+y?0.3, and layered a-LiFeO2 structure. A method of synthesizing the lithium-chromium-titanium manganese oxide includes preparing a first mixed solution by dispersing titanium dioxide (TiO2) in a mixed solution of chrome acetate (Cr3(OH)2(CH3CO2)7) and manganese acetate ((CH3CO2)2Mn.4H2O), adding a lithium hydroxide (LiOH) solution to the first mixed solution to obtain homogeneous precipitates, forming precursor powder that has the formula Li[Li(1-x)/3CrxTi(2/3)yMn2(1-x-y)/3]O2 where 0?x?0.3, 0?y?0.3 and 0.1?x+y?0.3 by heating the homogeneous precipitates, and heating the precursor powder to form oxide powder having a layered structure.
    Type: Grant
    Filed: July 6, 2004
    Date of Patent: January 2, 2007
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Xianglan Wu, Yong Joon Park, Kwang Sun Ryu, Soon Ho Chang
  • Patent number: 7008608
    Abstract: Provided is a lithium-cobalt-manganese oxide having the formula Li[CoxLi(1/3?x/3)Mn(2/3?2x/3)]O2(0.05<X<0.9) which provide a stable structure and a superior discharge capacity, and the method of synthesizing of the same. The method of synthesizing the oxides according to the present invention comprises: preparing an aqueous solution of lithium salt, cobalt salt, and manganese salt; forming a gel by burning the aqueous solution; making oxide powder by burning the gel; forming a fine oxide powder having a layered structure by the twice of treatments. The lithium-cobalt-manganese oxide synthesized according to the present invention has a stable and superior electrochemical characteristic. The oxide is synthesized by simple and low cost heat treatment process.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: March 7, 2006
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Yong Joon Park, Young Sik Hong, Xianglan Wu, Kwang Man Kim, Young Gi Lee, Kwang Sun Ryu, Soon Ho Chang
  • Patent number: 6986968
    Abstract: A cathode active material for a lithium secondary cell used in a cellular phone is disclosed. The cathode active material for the lithium secondary cell and the method the same having a high capacity and a long lifetime, different from LiCoO2 and LiMn2O4, Li(Ni, Co)O2, and V-system oxide that has been researched as the active material for substituting LiCoO2 are provided. The cathode active material for the lithium secondary cell in the next formula 1 is obtained by heating or chemically treating diadochite [Fe2(PO4)(SO4)(OH).6H2O] that is the mineral containing PO43?, SO42?, and OH?. LiaFebMc(PO4)x(SO4)y(OH)z ??(1) In the formula, M is at least one element selected from a radical consisting of Mg, Ti, Cr, Mn, Co, Ni, Cu, Zn, Al, and Si, with 0?a, c?0.5, 1?b?2, 0.5?x, y, z?1.5.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: January 17, 2006
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Young Sik Hong, Kwang Sun Ryu, Soon Ho Chang, Yong Joon Park, Young Gi Lee, Kwang Man Kim, Nam Gyu Park, Man Gu Kang, Xiang Lan Wu
  • Patent number: 6908708
    Abstract: A method of preparing layered lithium-chromium-manganese oxides having the formula Li[CrxLi(1/3?x/3) Mn(2/3?2x/3)]O2 where 0.1?X?0.5 for lithium batteries. Homogeneous precipitation is prepared by adding lithium hydroxide (LiOH) solution to a mixed solution of chromium acetate (Cr3(OH)2(CH3CO2)7) and manganese acetate ((CH3CO2)2Mn.4H2O), while precursor powders are prepared by firing the precipitation. After that, the precursor powders are subjected to two heat treatment to yield Li[CrxLi(1/3?x/3) Mn(2/3?2x/3)]O2 with ?-LiFeO2 structure.
    Type: Grant
    Filed: August 25, 2003
    Date of Patent: June 21, 2005
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Xianglan Wu, Yong Joon Park, Kwang Sun Ryu, Soon Ho Chang, Young-Sik Hong
  • Publication number: 20040261842
    Abstract: Provided is a dye-sensitized solar cell including liquid-type imidazolium material, which is liquid at a room temperature to a high temperature, as electrolyte.. The dye-sensitized solar cell includes a semiconductor electrode; a confronting electrode; and electrolyte of 1,3-vinylalkylimidazolium iodide family being inserted between the semiconductor electrode and the confronting electrode. Since the solar cell of the present research uses 1,3-vinylalkylimidazolium iodide instead of iodine-family oxidation and reduction electrolyte including organic solvent easily volatilized at a high temperature. Thus, the solar cell can have excellent thermal stability and temperature stability as well as high energy conversion efficiency.
    Type: Application
    Filed: April 15, 2004
    Publication date: December 30, 2004
    Inventors: Mangu Kang, Nam-Gyu Park, Kwang-Sun Ryu, Soon-Ho Chang
  • Publication number: 20040228791
    Abstract: Provided is a lithium-cobalt-manganese oxide having the formula Li[CoxLi(1/3-x/3)Mn(2/3-2x/3)]O2 (0.05<X<0.9) which provide a stable structure and a superior discharge capacity, and the method of synthesizing of the same. The method of synthesizing the oxides according to the present invention comprises: preparing an aqueous solution of lithium salt, cobalt salt, and manganese salt; forming a gel by burning the aqueous solution; making oxide powder by burning the gel; forming a fine oxide powder having a layered structure by the twice of treatments. The lithium-cobalt-manganese oxide synthesized according to the present invention has a stable and superior electrochemical characteristic. The oxide is synthesized by simple and low cost heat treatment process.
    Type: Application
    Filed: December 17, 2003
    Publication date: November 18, 2004
    Inventors: Yong Joon Park, Young Sik Hong, Xianglan Wu, Kwang Man Kim, Young Gi Lee, Kwang Sun Ryu, Soon Ho Chang
  • Publication number: 20040214088
    Abstract: A composite polymer electrolyte for a lithium secondary battery and a method of manufacturing the same are provided. The composite polymer electrolyte includes a composite film structure which includes a first porous polymer film with good mechanical properties and a second porous polymer film with submicro-scale morphology of more compact porous structure than the first porous polymer structure, coated on a surface of the first porous polymer film, and an electrolyte solution impregnated into the composite film structure. The different morphologies of the composite film structure enable to an increase in mechanical properties and ionic conductivity. Furthermore, the charge/discharge cycle performance and stability of a lithium metal polymer secondary battery are enhanced.
    Type: Application
    Filed: December 29, 2003
    Publication date: October 28, 2004
    Inventors: Young Gi Lee, Kwang Man Kim, Kwang Sun Ryu, Soon Ho Chang
  • Publication number: 20040214089
    Abstract: Provided are a composite polymer electrolyte for a lithium secondary battery that includes a composite polymer matrix structure having a single ion conductor-containing polymer matrix to enhance ionic conductivity and a method of manufacturing the same. The composite polymer electrolyte includes a first polymer matrix made of a first porous polymer with a first pore size; a second polymer matrix made of a single ion conductor, an inorganic material, and a second porous polymer with a second pore size smaller than the first pore size. The second polymer matrix is coated on a surface of the first polymer matrix. The composite polymer matrix structure can increase mechanical properties. The single ion conductor-containing porous polymer matrix of a submicro-scale can enhance ionic conductivity and the charge/discharge cycle stability.
    Type: Application
    Filed: December 30, 2003
    Publication date: October 28, 2004
    Inventors: Young Gi Lee, Kwang Sun Ryu, Soon Ho Chang
  • Patent number: 6756537
    Abstract: A dye-sensitized solar cell including a polymer electrolyte gel having a poly(vinylidene fluoride) (PVDF) polymer is provided. The dye-sensitized solar cell includes a semiconductor electrode, an opposed electrode, and a polymer electrolyte gel interposed between the semiconductor electrode and the opposed electrode while including poly(vinylidene fluoride) (PVDF) polymer or the copolymer thereof. Here, the polymer electrolyte gel is formed of a N-methy-2-pyrrolidone solvent or a 3-methoxypropionitrile (MP) solvent and the PVDF polymer or the copolymer thereof which is dissolved in the solvent to a predetermined amount.
    Type: Grant
    Filed: February 3, 2003
    Date of Patent: June 29, 2004
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Man-Gu Kang, Nam-Gyu Park, Kwang-Man Kim, Soon-Ho Chang
  • Publication number: 20040115534
    Abstract: Provided is a method for preparing a Li—Mn—Ni oxide for a lithium secondary battery having a composition of Li[NixLi(1/3-2x/3)Mn(2/3-X/3)O2 (0.05<X<0.6), including the steps of: a] preparing an aqueous solution by resolving lithium salt, manganese salt and nickel salt into distilled water; b) forming gel by heating the aqueous solution; c) preparing oxide powder by burning the gel; d) performing a first thermal treatment on the oxide powder, and grinding the resultant; and e) performing a second thermal treatment on the resultant powder, and grinding the resultant. The technology of the present invention can prepare a Li—Mn—Ni oxide having a composition of Li[NixLi(1/3-2x/3)Mn(2/3-x/3)O2 (0.05<X<0.6) to be used as a cathode material of a lithium secondary battery having a stable and excellent electrochemical characteristics.
    Type: Application
    Filed: October 8, 2003
    Publication date: June 17, 2004
    Inventors: Yong-Joon Park, Young-Sik Hong, Xianglan Wu, Kwang Sun Ryu, Kwang Man Kim, Young-Gi Lee, Soon Ho Chang
  • Publication number: 20040105809
    Abstract: A method of preparing layered lithium-chromium-manganese oxides having the formula Li[CrxLi(1/3-x/3) Mn(2/3-2x/3)]O2 where 0.1≦X≦0.5 for lithium batteries. Homogeneous precipitation is prepared by adding lithium hydroxide (LiOH) solution to a mixed solution of chromium acetate (Cr3(OH)2(CH3CO2)7) and manganese acetate ((CH3CO2)2Mn.4H2O), while precursor powders are prepared by firing the precipitation. After that, the precursor powders are subjected to two heat treatment to yield Li[CrxLi(1/3-x/3) Mn(2/3-2x/3)]O2 with &agr;-LiFeO2 structure.
    Type: Application
    Filed: August 25, 2003
    Publication date: June 3, 2004
    Inventors: Xianglan Wu, Yong Joon Park, Kwang Sun Ryu, Soon Ho Chang, Young-Sik Hong
  • Publication number: 20040071866
    Abstract: The present invention relates to a method of manufacturing a cathode electrode for a secondary lithium battery using vanadium oxide. Vanadium oxide is dissolved in an aqueous solution containing H2O2 to form a gel. Thus, the gel can be applied to a metal support even when the binder is not used or the binder of a small amount is used. If vanadium oxide of an adequate amount is put into the aqueous solution containing. H2O2, a transparent aqueous solution is formed while oxygen is generated. The aqueous solution is then changed to a gel state of a viscosity as the time elapses. A small amount of a conductive material and a binder are added in the course that the gel is formed, and are then uniformly mixed with vanadium oxide being an active material, so that a slurry is formed. As the slurry has a high viscosity, it can be applied to the metal support even with a small amount of the binder. Further, as the conductive material, the binder, etc.
    Type: Application
    Filed: December 18, 2002
    Publication date: April 15, 2004
    Inventors: Yong Joon Park, Kwang Man Kim, Young Sik Hong, Xiang Lan Wu, Young Gi Lee, Kwang Sun Ryu, Soon Ho Chang
  • Publication number: 20040072069
    Abstract: A cathode active material for a lithium secondary cell used in a cellular phone is disclosed. The cathode active material for the lithium secondary cell and the method the same having a high capacity and a long lifetime, different from LiCoO2 and LiMn2O4, Li(Ni, Co)O2, and V-system oxide that has been researched as the active material for substituting LiCoO2 are provided. The cathode active material for the lithium secondary cell in the next formula 1 is obtained by heating or chemically treating diadochite [Fe2(PO4)(SO4)(OH).6H2O] that is the mineral containing PO43−, SO42−, and OH−.
    Type: Application
    Filed: December 20, 2002
    Publication date: April 15, 2004
    Inventors: Young Sik Hong, Kwang Sun Ryu, Soon Ho Chang, Yong Joon Park, Young Gi Lee, Kwang Man Kim, Nam Gyu Park, Man Gu Kang, Xiang Lan Wu
  • Publication number: 20030145885
    Abstract: A dye-sensitized solar cell including a polymer electrolyte gel having a poly(vinylidene fluoride) (PVDF) polymer is provided. The dye-sensitized solar cell includes a semiconductor electrode, an opposed electrode, and a polymer electrolyte gel interposed between the semiconductor electrode and the opposed electrode while including poly(vinylidene fluoride) (PVDF) polymer or the copolymer thereof. Here, the polymer electrolyte gel is formed of a N-methy-2-pyrrolidone solvent or a 3-methoxypropionitrile (MP) solvent and the PVDF polymer or the copolymer thereof which is dissolved in the solvent to a predetermined amount.
    Type: Application
    Filed: February 3, 2003
    Publication date: August 7, 2003
    Inventors: Man-Gu Kang, Nam-Gyu Park, Kwang-Man Kim, Soon-Ho Chang
  • Patent number: 6582850
    Abstract: The present invention provides a new organic-inorganic (PDMcT+PANI)/V2O5 composites electrode material in which two different organic polymers are intercalated into the V2O5 interlayer, which shows higher discharge capacity than each isolated polymers and V2O5. Therefore, it can be used as a cathode in secondary lithium battery.
    Type: Grant
    Filed: January 31, 2001
    Date of Patent: June 24, 2003
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Nam-Gyu Park, Kwang-Man Kim, Kwang-Sun Ryu, Yong-Joon Park, Soon-Ho Chang
  • Patent number: RE44264
    Abstract: Provided are a composite polymer electrolyte for a lithium secondary battery in which a composite polymer matrix multi-layer structure composed of a plurality of polymer matrices with different pore sizes is impregnated with an electrolyte solution, and a method of manufacturing the same. Among the polymer matrices, a microporous polymer matrix with a smaller pore size contains a lithium cationic single-ion conducting inorganic filler, thereby enhancing ionic conductivity, the distribution uniformity of the impregnated electrolyte solution, and maintenance characteristics. The microporous polymer matrix containing the lithium cationic single-ion conducting inorganic filler is coated on a surface of a porous polymer matrix to form the composite polymer matrix multi-layer structure, which is then impregnated with the electrolyte solution, to manufacture the composite polymer electrolyte. The composite polymer electrolyte is used in a unit battery.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: June 4, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Young Gi Lee, Kwang Man Kim, Kwang Sun Ryu, Soon Ho Chang