Patents by Inventor Stephan SCHWAIGER

Stephan SCHWAIGER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240053527
    Abstract: A light guide comprising an outcoupling structure is provided. The outcoupling structure is adapted to deflect a light coupled into the light guide in a first predetermined outcoupling direction. The outcoupling structure is formed by a configuration of a surface of the light guide.
    Type: Application
    Filed: August 11, 2023
    Publication date: February 15, 2024
    Applicants: PLASTIC OMNIUM LIGHTING SYSTEMS GMBH, REHAU Automotive SE & Co. KG
    Inventors: Stephan Schwaiger, Oliver Woisetschläger, Joachim Stöhr, Jürgen Hager, Patrick Kätzel, Rick Göschel, Johann Reichstein
  • Publication number: 20230402538
    Abstract: A vertical semiconductor component. The component includes: a drift region having a first conductivity type; a trench structure on or above the drift region, a shielding structure situated laterally next to at least one sidewall of the trench structure on or above the drift region and having a second conductivity type, and the shielding structure having at least a part of a shielding structure-trench structure such that the shielding structure has at least a first region having a first thickness and a second region having a second thickness, and an edge termination structure on or above the drift region and having the second conductivity type, and the shielding structure having a first doping degree, and the edge termination structure having a second doping degree; and at least in the second region of the shielding structure, the edge termination structure being situated between the drift region and the shielding structure.
    Type: Application
    Filed: November 17, 2021
    Publication date: December 14, 2023
    Inventors: Alberto Martinez-Limia, Daniel Krebs, Stephan Schwaiger, Wolfgang Feiler
  • Publication number: 20230231400
    Abstract: A method and device for reducing voltage loads of semiconductor components of an inverter. The method includes: ascertaining a request to charge a battery of an electric system including the battery, the inverter, and an electric machine. The inverter including a series connection including a first and a second semiconductor component, and being configured to convert a direct voltage provided by the battery into an alternating voltage for the electric machine, and adapt a gate voltage of the first semiconductor component and/or of the second semiconductor component to interrupt a current flow between the battery and the electric machine during the charging. A voltage load of a gate oxide layer of the semiconductor components is reduced by decreasing the gate voltages of the first semiconductor component and of the second semiconductor component and/or a voltage load of a drain-source path of the semiconductor components being matched to one another.
    Type: Application
    Filed: January 17, 2023
    Publication date: July 20, 2023
    Inventors: Karl Oberdieck, Hadiuzzaman Syed, Manuel Horvath, Marco Graf, Sebastian Strache, Stephan Schwaiger
  • Publication number: 20220320286
    Abstract: A power transistor cell including a layer arrangement, which includes a front side and a rear side, the front side being situated opposite the rear side. A trench extends starting from, and perpendicular to, the front side along a first direction into the layer arrangement. The trench extends at least into a current-spreading layer, and expands along a second direction, which is situated perpendicularly to the first direction. Field shielding areas are situated at least partially in the current-spreading layer, wherein source areas and field shielding contacting areas are situated alternatingly along the second direction. One portion each of the body areas is situated between each source area and each field shielding contacting area. The field shielding contacting areas connect the field shielding areas to first metal areas on the front side. The field shielding contacting areas make contact at least partially with side faces of the trench.
    Type: Application
    Filed: May 18, 2020
    Publication date: October 6, 2022
    Inventors: Alberto Martinez-Limia, Jan-Hendrik Alsmeier, Klaus Heyers, Stephan Schwaiger, Wolfgang Feiler
  • Publication number: 20220320306
    Abstract: A trench transistor. The transistor including: a semiconductor region, a trench structure formed in the semiconductor region; a gate insulation layer and an electrically conductive gate layer formed on the gate insulation layer in the trench structure, and a gate contact, which is electrically conductively connected to the gate layer in an edge area of the trench transistor. A thickness of the gate insulation layer in the edge area of the trench transistor is greater than in an active area of the trench transistor.
    Type: Application
    Filed: August 24, 2020
    Publication date: October 6, 2022
    Inventors: Christian Tobias Banzhaf, Jan-Hendrik Alsmeier, Stephan Schwaiger, Wolfgang Feiler, Dick Scholten, Klaus Heyers
  • Publication number: 20220246754
    Abstract: A semiconductor device. The semiconductor device includes a drift region of a first conductivity type, a channel region of a second conductivity type on the drift region, a source region of the first conductivity type on the channel region, a trench, which forms an insulated gate and extends through the source region and the channel region so that its bottom is situated in the drift region, and at least one buried region of the second conductivity type, which extends within the drift region from an edge region of the drift region to the trench and is in direct contact with a first subarea of a surface of the trench, a second subarea of a surface of the trench being in direct contact with the drift region, and the buried region being connected to the source region in an electrically conducting manner.
    Type: Application
    Filed: August 19, 2020
    Publication date: August 4, 2022
    Inventors: Alberto Martinez-Limia, Jan-Hendrik Alsmeier, Klaus Heyers, Stephan Schwaiger, Wolfgang Feiler
  • Publication number: 20220231148
    Abstract: A method for manufacturing a power transistor. The method includes: applying a first epitaxial layer including a first doping concentration to a front side of a semiconductor substrate, producing an expansion layer, which is situated inside the first epitaxial layer, producing various implanted areas starting from the front side of the semiconductor substrate, producing a trench structure starting from the front side of the semiconductor substrate, producing first isolation areas in the surroundings of the trench structure, producing transistor heads, and applying metal layers.
    Type: Application
    Filed: May 26, 2020
    Publication date: July 21, 2022
    Inventors: Alberto Martinez-Limia, Franziska Felicitas Fink, Jan-Hendrik Alsmeier, Stephan Schwaiger, Wolfgang Feiler
  • Publication number: 20220231120
    Abstract: A transistor cell including a semiconductor substrate, which has a front side and a rear side, the front side being situated opposite the rear side. An epitaxial layer is situated on the front side. Channel regions are situated on the epitaxial layer. Source regions are situated on the channel regions. A trench and field shielding regions extending from the front side of the semiconductor substrate into the epitaxial layer, the field shielding regions each being situated laterally spaced apart from the trench and the trench having a shallower depth than the field shielding regions. An implanted expansion region having a particular thickness is situated below the trench.
    Type: Application
    Filed: May 18, 2020
    Publication date: July 21, 2022
    Inventors: Alberto Martinez-Limia, Stephan Schwaiger, Daniel Krebs, Dick Scholten, Holger Bartolf, Jan-Hendrik Alsmeier, Wolfgang Feiler
  • Publication number: 20220209006
    Abstract: A semiconductor component. The semiconductor component includes a semiconductor substrate that includes a first side, on which an epitaxial layer is situated. On the epitaxial layer, body regions are sectionally situated, and on the body regions, source regions are situated. A plurality of first trenches and a plurality of second trenches extending starting from the source regions into the epitaxial layer. The first trenches have a greater depth than the second trenches. A second trench sectionally extends into a first trench in each case. On a trench surface of the first trenches, a layer including a first doping is situated in each case. The first trenches are filled with a first material including a second doping, the first doping having a higher value than the second doping.
    Type: Application
    Filed: March 25, 2020
    Publication date: June 30, 2022
    Inventors: Alberto Martinez-Limia, Alfred Goerlach, Holger Bartolf, Stephan Schwaiger, Wolfgang Feiler
  • Publication number: 20210005711
    Abstract: A vertical power transistor, including a semiconductor substrate, on which at least one first layer and one second layer are situated, the second layer being situated on the first layer, and the first layer including a first semiconductor material; and a plurality of trenches, which extend from an upper side of the second layer into the first layer. The first layer has a first doping, and each trench has a first region, which extends from the respective trench bottom to a first level. Each first region is filled with a second semiconductor material, which has a second doping. The first semiconductor material and the second semiconductor material are different. Each first region is connected electrically to the second layer. The second doping is higher than the first doping. Heterojunctions, which behave as unipolar, rectifying junctions, form between the first layer and each first region.
    Type: Application
    Filed: November 19, 2018
    Publication date: January 7, 2021
    Inventors: Alberto Martinez-Limia, Alfred Goerlach, Holger Bartolf, Stephan Schwaiger, Wolfgang Feiler
  • Patent number: 10793057
    Abstract: In various embodiments, a lighting system is provided. The lighting system includes an optical unit having a plurality of light guides which are respectively provided for at least one light source and which respectively have an input coupling face. On the output side, the light guides are connected via a common connecting portion of the optical unit, the connecting portion having an output face, pointing away from the light guides, for the light emerging from the light guides. The lighting system further includes a holding frame for the optical unit, by means of which the optical unit is fastened to a printed circuit board, having the light sources, of the lighting system.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: October 6, 2020
    Assignee: OSRAM GmbH
    Inventors: Joachim Stoehr, Philipp Helbig, Stephan Schwaiger
  • Publication number: 20200273986
    Abstract: A vertical power transistor including a semiconductor substrate, which has a front side on which at least one epitaxial layer, one channel layer, and one source layer are situated. The epitaxial layer includes a first semiconductor material which has a first doping, and a plurality of first trenches and second trenches, the first trenches and the second trenches being situated alternatingly and extending perpendicularly at least into the channel layer starting from a surface of the source layer, an area extending perpendicularly into the epitaxial layer, starting from an underside of each first trench bottom, the area including a second semiconductor material which encompasses a second doping.
    Type: Application
    Filed: August 21, 2018
    Publication date: August 27, 2020
    Inventors: Holger Bartolf, Wolfgang Feiler, Stephan Schwaiger, Jan-Hendrik Alsmeier, Matthias Neubauer
  • Patent number: 10598328
    Abstract: A lighting system includes an optical unit. The optical unit includes at least one light guide, which is provided for at least one light source. The lighting system further includes a retaining frame for the optical unit, via which frame the optical unit is fastened to a printed circuit board including the at least one light source, and a spacer for positioning the optical unit, which spacer is arranged between the retaining frame and the printed circuit board, the spacer having at least one continuous bearing opening in order to receive the at least one light guide. At least one guide recess is formed on the edge of the at least one bearing opening and at least one support face is provided on the edge, on which support face the light guide introduced into the bearing opening can be supported.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: March 24, 2020
    Assignee: Osram GmbH
    Inventors: Joachim Stoehr, Philipp Helbig, Stephan Schwaiger
  • Patent number: 10488670
    Abstract: In various embodiments, an optical element is provided. The optical element includes an imaging region with a lens arrangement which is aligned along an optical axis, and a collimation region which surrounds the imaging region to the side of the optical axis.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: November 26, 2019
    Assignee: OSRAM GmbH
    Inventors: Stephan Schwaiger, Juergen Hager
  • Patent number: 10408411
    Abstract: An illumination device includes multiple semiconductor primary light sources for emitting respective primary light beams, at least one movable mirror, which can be illuminated by means of the primary light beams, and which can assume at least two angle positions, and a luminophore element, which can be illuminated by means of primary light beams deflected by the at least one mirror. Light spots of the individual primary light beams are locally differentiable on the at least one luminophore element, an overall light spot composed of the light spots of the individual primary light beams is locally differentiable on the at least one luminophore element depending on the angle position of the at least one movable mirror, and at least one beam property of at least one primary light beam incident on the at least one luminophore element is variable during operation of the illumination device.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: September 10, 2019
    Assignee: OSRAM GmbH
    Inventor: Stephan Schwaiger
  • Patent number: 10344934
    Abstract: In various embodiments, an illumination system is provided. The illumination system may include at least two light guides, which each have an input coupling surface and an output coupling surface, and at least one radiation source having a radiation surface that faces the corresponding input coupling surface provided for a respective light guide. A distance between the input coupling surface of one of the light guides and the radiation surface of the at least one assigned radiation source and the distance between the input coupling surface of a further light guide and the radiation source of the at least one assigned radiation source differ.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: July 9, 2019
    Assignee: OSRAM GMBH
    Inventor: Stephan Schwaiger
  • Patent number: 10317523
    Abstract: A lighting device for a vehicle is provided. The lighting device includes a light source with which at least one of useful light or assist light can be emitted into the surroundings, a sensor with which at least one of useful light or assist light reflected by the surroundings can be at least partially detected, and an electronic unit for evaluating at least one of the useful light or assist light sensed by the sensor.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: June 11, 2019
    Assignee: OSRAM GMBH
    Inventors: Stephan Schwaiger, Oliver Hering
  • Patent number: 10247382
    Abstract: A lighting device is disclosed with an electromagnetic radiation source for irradiating a conversion element arranged in the lighting device with an excitation radiation. The conversion element has a first element side and a second element side. The first element side delimits a first radiation space and the second element side delimits a second radiation space. At least one optical unit at least for part of the radiation emanating from the first element side is arranged in the first radiation space and at least one optical unit at least for part of the radiation emanating from the second element side is arranged in the second radiation space.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: April 2, 2019
    Assignee: OSRAM GMBH
    Inventors: Juergen Hager, Stephan Schwaiger, Jasmin Muster, Oliver Hering
  • Patent number: 10228106
    Abstract: Various embodiment may relate to a luminaire, including at least one light source, in particular a semiconductor light source, for emitting a primary light beam onto at least one spaced-apart luminescent body, wherein the luminescent body includes at least one hole and a direct light component of the respective primary light beam can be radiated through the at least one hole.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: March 12, 2019
    Assignee: OSRAM GmbH
    Inventors: Juergen Hager, Stephan Schwaiger, Oliver Hering
  • Publication number: 20190063708
    Abstract: A lighting system includes an optical unit. The optical unit includes at least one light guide, which is provided for at least one light source. The lighting system further includes a retaining frame for the optical unit, via which frame the optical unit is fastened to a printed circuit board including the at least one light source, and a spacer for positioning the optical unit, which spacer is arranged between the retaining frame and the printed circuit board, the spacer having at least one continuous bearing opening in order to receive the at least one light guide. At least one guide recess is formed on the edge of the at least one bearing opening and at least one support face is provided on the edge, on which support face the light guide introduced into the bearing opening can be supported.
    Type: Application
    Filed: August 21, 2018
    Publication date: February 28, 2019
    Inventors: Joachim Stoehr, Philipp Helbig, Stephan Schwaiger