Patents by Inventor Stephen D. O'Connor

Stephen D. O'Connor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080237061
    Abstract: The present invention is directed to the detection of target analytes using electronic techniques, particularly AC techniques.
    Type: Application
    Filed: October 30, 2007
    Publication date: October 2, 2008
    Applicant: Clinical Micro Sensors, Inc.
    Inventors: Stephen D. O'Connor, Jon Faiz Kayyem, Thomas J. Meade
  • Publication number: 20080202927
    Abstract: The invention is directed to devices that allow for simultaneous multiple biochip analysis. In particular, the devices are configured to hold multiple cartridges comprising biochips comprising arrays such as nucleic acid arrays, and allow for high throughput analysis of samples.
    Type: Application
    Filed: January 25, 2007
    Publication date: August 28, 2008
    Applicant: Clinical Micro Sensors, Inc.
    Inventors: Jon F. Kayyem, Stephen D. O'Connor
  • Patent number: 7393645
    Abstract: The present invention relates to the use of self-assembled monolayers with mixtures of conductive oligomers and insulators to detect target analytes.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: July 1, 2008
    Assignee: Clinical Micro Sensors, Inc.
    Inventors: Jon Faiz Kayyem, Stephen D. O'Connor
  • Patent number: 7384749
    Abstract: The invention relates to nucleic acids covalently coupled to electrodes via conductive oligomers. More particularly, the invention is directed to the site-selective modification of nucleic acids with electron transfer moieties and electrodes to produce a new class of biomaterials, and to methods of making and using them.
    Type: Grant
    Filed: January 30, 2006
    Date of Patent: June 10, 2008
    Assignee: Clinical Micro Sensors, Inc.
    Inventors: Jon F. Kayyem, Stephen D. O'Connor, Michael Gozin, Changjun Yu, Thomas J. Meade
  • Patent number: 7381533
    Abstract: The invention relates to nucleic acids covalently coupled to electrodes via conductive oligomers. More particularly, the invention is directed to the site-selective modification of nucleic acids with electron transfer moieties and electrodes to produce a new class of biomaterials, and to methods of making and using them.
    Type: Grant
    Filed: December 6, 2005
    Date of Patent: June 3, 2008
    Assignee: Clinical Micro Sensors, Inc.
    Inventors: Jon F. Kayyem, Stephen D. O'Connor, Michael Gozin, Changjun Yu, Thomas J. Meade
  • Patent number: 7381525
    Abstract: The invention relates to nucleic acids covalently coupled to electrodes via conductive oligomers. More particularly, the invention is directed to the site-selective modification of nucleic acids with electron transfer moieties and electrodes to produce a new class of biomaterials, and to methods of making and using them.
    Type: Grant
    Filed: June 12, 1997
    Date of Patent: June 3, 2008
    Assignee: Clinical Micro Sensors, Inc.
    Inventors: Jon Faiz Kayyem, Stephen D. O'Connor
  • Patent number: 7312087
    Abstract: The invention is directed to devices and methods that allow for simultaneous multiple biochip analysis. The method of analyzing the plurality of biochips includes inserting a first biochp into a first station of an analysis device, inserting a second biochip into a second station of the analysis device, wherein each of the first and second biochips include a substrate, the substrates including an array of detection electrodes, each electrode including a different capture binding ligand, a different target analyte, and a label, and a plurality of electrical contracts, detecting current as an indication of the presence of the labels on the first biochip, and detecting current as an indication of the presence of the labels on the first second biochip. The devices and method may be used with multiple cartridges comprising biochips comprising arrays, such as nucleic acid arrays, and allow for high throughput analysis of samples.
    Type: Grant
    Filed: January 11, 2001
    Date of Patent: December 25, 2007
    Assignee: Clinical Micro Sensors, Inc.
    Inventors: Hau H. Duong, Gary Blackburn, Jon F. Kayyem, Stephen D. O'Connor, Gary T. Olsen, Robert Pietri, Robert H. Terbrueggen
  • Patent number: 7261812
    Abstract: Chromatographic separation devices include multiple batch-processed columns joined by a body structure and adapted to perform parallel analyses. Both slurry-packed and monolithic column embodiments are provided. One or more liquid-permeable frits of various types may be used to retain stationary phase material within columns. A fluidic distribution network may be used to distribute stationary phase material and/or mobile phase solvents to multiple columns. Separation devices, including microfluidic embodiments, may be fabricated with various materials including polymers. Multi-column fabrication and separation methods are provided.
    Type: Grant
    Filed: August 7, 2003
    Date of Patent: August 28, 2007
    Assignee: Nanostream, Inc.
    Inventors: Christoph D. Karp, Joseph F. Covington, Matthew M. Gregori, Steven E. Hobbs, Jeffrey A. Koehler, Stephen D. O'Connor, Paren P. Patel, Scott G. Beach
  • Patent number: 7172897
    Abstract: The invention is directed to devices that allow for simultaneous multiple biochip analysis. In particular, the devices are configured to hold multiple cartridges comprising biochips comprising arrays such as nucleic acid arrays, and allow for high throughput analysis of samples.
    Type: Grant
    Filed: November 5, 2001
    Date of Patent: February 6, 2007
    Assignee: Clinical Micro Sensors, Inc.
    Inventors: Gary Blackburn, Hau H. Duong, Piotr Grodzinski, Jon Faiz Kayyem, Stephen D. O'Connor, Robert Pietri, Robert Henry Terbrueggen, Frederic Zenhausern, Gary T. Olsen
  • Patent number: 7160678
    Abstract: The present invention relates to the use of self-assembled monolayers with mixtures of conductive oligomers and insulators to detect target analytes.
    Type: Grant
    Filed: November 30, 1999
    Date of Patent: January 9, 2007
    Assignee: Clinical Micro Sensors, Inc.
    Inventors: Jon Faiz Kayyem, Stephen D. O'Connor
  • Patent number: 7132650
    Abstract: High throughput analytical systems and methods employing multiple liquid phase separation process regions coupled to a common mass spectrometer are provided. Disclosed systems and methods permits parallel separation and parallel storage of discrete eluate fractions, followed by sequential discharge and ionization of previously stored eluate portions to yield a composite ion stream containing the sequential series of eluate portions, followed by mass analysis of the ion stream. A common manifold may receive ions and utilize pressurized gas or ion gating to direct ions within the manifold toward the mass spectrometer inlet.
    Type: Grant
    Filed: September 25, 2004
    Date of Patent: November 7, 2006
    Assignee: Nanostream, Inc.
    Inventors: Ronald C. Gamble, Stephen D. O'Connor, Bruce Wilcox, Matthew M. Gregori
  • Patent number: 7125668
    Abstract: The invention relates to nucleic acids covalently coupled to electrodes via conductive oligomers. More particularly, the invention is directed to the site-selective modification of nucleic acids with electron transfer moieties and electrodes to produce a new class of biomaterials, and to methods of making and using them.
    Type: Grant
    Filed: September 5, 2002
    Date of Patent: October 24, 2006
    Assignee: Clinical Micro Sensors, Inc.
    Inventors: Jon Faiz Kayyem, Stephen D. O'Connor, Michael Gozin, Changjun Yu
  • Patent number: 7074327
    Abstract: Systems and methods are provided for preparing samples for chromatographic separations and then chromatographically separating the prepared samples, preferably in a high-throughput fashion utilizing multiple parallel first (fluid) processing regions in fluid communication with multiple parallel second (fluid) processing regions wherein the each second processing region includes a chromatography column. One or more common fluid supplies may be utilized in each of the sample preparation and separation steps to minimize the number of requisite fluid connections and external components such as pumps, reservoirs, pulse dampers, flow controllers, and the like.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: July 11, 2006
    Assignee: Nanostream, Inc.
    Inventors: Stephen D. O'Connor, Eugene Dantsker, Christoph D. Karp, Mike S. Lee, Surekha Vajjhala
  • Patent number: 7056669
    Abstract: The invention relates to nucleic acids covalently coupled to electrodes via conductive oligomers. More particularly, the invention is directed to the site-selective modification of nucleic acids with electron transfer moieties and electrodes to produce a new class of biomaterials, and to methods of making and using them.
    Type: Grant
    Filed: September 11, 2002
    Date of Patent: June 6, 2006
    Assignee: Clinical Micro Sensors, Inc.
    Inventors: Jon Faiz Kayyem, Stephen D. O'Connor
  • Patent number: 7045285
    Abstract: The invention relates to nucleic acids covalently coupled to electrodes via conductive oligomers. More particularly, the invention is directed to the site-selective modification of nucleic acids with electron transfer moieties and electrodes to produce a new class of biomaterials, and to methods of making and using them.
    Type: Grant
    Filed: April 21, 2000
    Date of Patent: May 16, 2006
    Assignee: Clinical Micro Sensors, Inc.
    Inventors: Jon F. Kayyem, Stephen D. O'Connor, Michael Gozin, Changjun Yu, Thomas J. Meade
  • Patent number: 7027683
    Abstract: Fluidic systems, including microfluidic systems, are used to manipulate light by light-fluid interaction so as to affect reflection, refraction, absorption, optical filtering, or scattering of the beam. One or more fluids may be provided to a channel or chamber and exposed to an incident beam, and the proportion of at least one of a plurality of fluids may be varied. Light may interact with a discrete fluid plug subject to movement within a channel. One or more flexible members may be employed, such as to provide a variable lens. Fluidic optical devices may be used in applications including optical switching, optical filtering, or optical processing. Multiplexed fluidic optical systems are further provided.
    Type: Grant
    Filed: August 15, 2001
    Date of Patent: April 11, 2006
    Assignee: Nanostream, Inc.
    Inventors: Stephen D. O'Connor, Eugene Dantsker, Christoph D. Karp
  • Patent number: 7014992
    Abstract: The invention relates to nucleic acids covalently coupled to electrodes via conductive oligomers. More particularly, the invention is directed to the site-selective modification of nucleic acids with electron transfer moieties and electrodes to produce a new class of biomaterials, and to methods of making and using them.
    Type: Grant
    Filed: June 12, 1997
    Date of Patent: March 21, 2006
    Assignee: Clinical Micro Sensors, Inc.
    Inventors: Jon Faiz Kayyem, Stephen D. O'Connor, Michael Gozin, Changjun Yu, Thomas J. Meade
  • Patent number: 6987263
    Abstract: Systems for analyzing multiple samples in parallel using mass spectrometric preferably coupled with fluid phase separation techniques are provided. A multi-analyzer mass spectrometer includes multiple inlets, multiple mass analyzers, and multiple transducers to conduct mass analyses of multiple samples in parallel. A modular mass analyzer may include a vacuum enclosure, a chassis, and multiple mass analysis modules disposed within the chassis. Modules are preferably disposed in a spatially compact two-dimensional array. A common multi-stage vacuum system may be utilized in conjunction with baffles or partitions disposed within and between modules to maintain differential vacuum conditions within the spectrometer utilizing a minimum number of pumps. Common control inputs may be provided to multiple modules or other components within a multi-analyzer spectrometer.
    Type: Grant
    Filed: December 13, 2003
    Date of Patent: January 17, 2006
    Assignee: Nanostream, Inc.
    Inventors: Steven E. Hobbs, Stephen D. O'Connor, Ronald C. Gamble
  • Patent number: 6981522
    Abstract: Microfluidic devices having a plurality of functional features for performing one or more fluidic operations in parallel are provided. Reagents, samples or other fluids common to multiple functional features (“common fluids”) may be input into a microfluidic device or system through one or more distributing inputs that divide and distribute the common fluids as desired. The use of a multi-layer fabrication technique allows multiple distributing inputs to distribute to multiple functional features in a microfluidic device without undesirable fluid channel intersections.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: January 3, 2006
    Assignee: Nanostream, Inc.
    Inventors: Stephen D. O'Connor, Christoph D. Karp, Eugene Dantsker
  • Patent number: 6977151
    Abstract: The invention relates to nucleic acids covalently coupled to electrodes via conductive oligomers. More particularly, the invention is directed to the site-selective modification of nucleic acids with electron transfer moieties and electrodes to produce a new class of biomaterials, and to methods of making and using them.
    Type: Grant
    Filed: February 20, 2002
    Date of Patent: December 20, 2005
    Assignee: Clinical Micro Sensors, Inc.
    Inventors: Jon Faiz Kayyem, Stephen D. O'Connor, Michael Gozin, Changjun Yu, Thomas J. Meade