Patents by Inventor Stephen Gonya

Stephen Gonya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10827608
    Abstract: A method for making conformal non-planar multi-layer circuitry is described. The method can include providing a substrate having a non-planar surface and depositing a first conformal dielectric layer on the substrate, the first conformal dielectric layer conforming to the non-planar surface of the substrate and having a non-planar surface. The method can also include applying a first conformal circuitry layer on the first conformal dielectric layer. The method can include depositing a second conformal dielectric layer on the first conformal circuitry layer, the second conformal dielectric layer conforming to a non-planar surface of the first conformal circuitry layer, and applying a second conformal circuitry layer on the second conformal dielectric layer. Successive layers can be sequentially deposited.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: November 3, 2020
    Assignee: Lockheed Martin Corporation
    Inventors: Stephen Gonya, Kenn Twigg, Jim Patterson
  • Patent number: 10568204
    Abstract: A method for making conformal non-planar multi-layer circuitry is described. The method can include providing a substrate having a non-planar surface and depositing a first conformal dielectric layer on the substrate, the first conformal dielectric layer conforming to the non-planar surface of the substrate and having a non-planar surface. The method can also include applying a first conformal circuitry layer on the first conformal dielectric layer. The method can include depositing a second conformal dielectric layer on the first conformal circuitry layer, the second conformal dielectric layer conforming to a non-planar surface of the first conformal circuitry layer, and applying a second conformal circuitry layer on the second conformal dielectric layer. Successive layers can be sequentially deposited. Microvias may provide electrical connections between circuit layers.
    Type: Grant
    Filed: January 22, 2018
    Date of Patent: February 18, 2020
    Assignee: LOCKHEED MARTIN CORPORATION
    Inventors: Stephen Gonya, Kenn Twigg, Jim Patterson
  • Publication number: 20190215955
    Abstract: A method for making conformal non-planar multi-layer circuitry is described. The method can include providing a substrate having a non-planar surface and depositing a first conformal dielectric layer on the substrate, the first conformal dielectric layer conforming to the non-planar surface of the substrate and having a non-planar surface. The method can also include applying a first conformal circuitry layer on the first conformal dielectric layer. The method can include depositing a second conformal dielectric layer on the first conformal circuitry layer, the second conformal dielectric layer conforming to a non-planar surface of the first conformal circuitry layer, and applying a second conformal circuitry layer on the second conformal dielectric layer. Successive layers can be sequentially deposited.
    Type: Application
    Filed: March 12, 2019
    Publication date: July 11, 2019
    Inventors: Stephen GONYA, Kenn TWIGG, Jim PATTERSON
  • Patent number: 10154584
    Abstract: A method of producing a non-planar conforming circuit on a non-planar surface includes creating a first set of conforming layers. The first set of conforming layers is created by applying an oxide dielectric layer to the surface, applying a conductive material layer to the oxide dielectric layer, applying a resist layer to the conductive material layer, patterning the resist layer according to a desired circuit layout, etching the surface to remove exposed conductive material, and stripping the resist layer. The process may be repeated to form multiple layers of conforming circuits with electrical connections between layers formed by blind microvias. The resulting set of conforming layers can be sealed.
    Type: Grant
    Filed: July 28, 2016
    Date of Patent: December 11, 2018
    Assignee: Lockheed Martin Corporation
    Inventors: Stephen Gonya, James Sean Eiche, James Patterson, Kenneth R. Twigg
  • Patent number: 10123410
    Abstract: A method of producing a non-planar conforming circuit on a non-planar surface includes creating a first set of conforming layers. The first set of conforming layers is created by applying an oxide dielectric layer to the surface, applying a conductive material layer to the oxide dielectric layer, applying a resist layer to the conductive material layer, patterning the resist layer according to a desired circuit layout, etching the surface to remove exposed conductive material, and stripping the resist layer. The process may be repeated to form multiple layers of conforming circuits with electrical connections between layers formed by blind microvias. The resulting set of conforming layers can be sealed.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: November 6, 2018
    Assignee: Lockheed Martin Corporation
    Inventors: Stephen Gonya, James Sean Eiche, James Patterson, Kenneth R. Twigg
  • Publication number: 20180192513
    Abstract: A method for making conformal non-planar multi-layer circuitry is described. The method can include providing a substrate having a non-planar surface and depositing a first conformal dielectric layer on the substrate, the first conformal dielectric layer conforming to the non-planar surface of the substrate and having a non-planar surface. The method can also include applying a first conformal circuitry layer on the first conformal dielectric layer. The method can include depositing a second conformal dielectric layer on the first conformal circuitry layer, the second conformal dielectric layer conforming to a non-planar surface of the first conformal circuitry layer, and applying a second conformal circuitry layer on the second conformal dielectric layer. Successive layers can be sequentially deposited. Microvias may provide electrical connections between circuit layers.
    Type: Application
    Filed: January 22, 2018
    Publication date: July 5, 2018
    Inventors: Stephen GONYA, Kenn TWIGG, Jim PATTERSON
  • Patent number: 9894760
    Abstract: A method for making conformal non-planar multi-layer circuitry is described. The method can include providing a substrate having a non-planar surface and depositing a first conformal dielectric layer on the substrate, the first conformal dielectric layer conforming to the non-planar surface of the substrate and having a non-planar surface. The method can also include applying a first conformal circuitry layer on the first conformal dielectric layer. The method can include depositing a second conformal dielectric layer on the first conformal circuitry layer, the second conformal dielectric layer conforming to a non-planar surface of the first conformal circuitry layer, and applying a second conformal circuitry layer on the second conformal dielectric layer. Successive layers can be sequentially deposited. Microvias may provide electrical connections between circuit layers.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: February 13, 2018
    Assignee: Lockheed Martin Corporation
    Inventors: Stephen Gonya, Kenn Twigg, Jim Patterson
  • Patent number: 9812228
    Abstract: An X-ray obscuration (XRO) film comprising one or more metallic wire mesh layers and an adjacent layer of indium foil having portions which extend into openings of the wire mesh and in contact with metallic portions thereof. The XRO film can be capable of absorbing at least a portion of X-ray energy thereby creating an interference pattern when the XRO film is coupled with an electronic circuit and placed between an X-ray source and an X-ray detector and subjected to radiographic inspection. The interference pattern can create sufficient visual static to effectively obscure circuit lines in the electronic circuit when subjected to radiographic inspection techniques. The XRO film can be substantially thinner than existing solutions for preventing X-ray inspection with an exemplary embodiment being no more than 5 mils thick. The metallic XRO film can also provide electromagnetic shielding and/or heat dissipation for electronic circuits.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: November 7, 2017
    Assignee: Lockheed Martin Corporation
    Inventors: Stephen Gonya, Jesse Iannon
  • Publication number: 20170084356
    Abstract: An X-ray obscuration (XRO) film comprising one or more metallic wire mesh layers and an adjacent layer of indium foil having portions which extend into openings of the wire mesh and in contact with metallic portions thereof. The XRO film can be capable of absorbing at least a portion of X-ray energy thereby creating an interference pattern when the XRO film is coupled with an electronic circuit and placed between an X-ray source and an X-ray detector and subjected to radiographic inspection. The interference pattern can create sufficient visual static to effectively obscure circuit lines in the electronic circuit when subjected to radiographic inspection techniques. The XRO film can be substantially thinner than existing solutions for preventing X-ray inspection with an exemplary embodiment being no more than 5 mils thick. The metallic XRO film can also provide electromagnetic shielding and/or heat dissipation for electronic circuits.
    Type: Application
    Filed: December 2, 2016
    Publication date: March 23, 2017
    Inventors: Stephen GONYA, Jesse IANNON
  • Patent number: 9515030
    Abstract: An X-ray obscuration (XRO) film comprising one or more metallic wire mesh layers and an adjacent layer of indium foil having portions which extend into openings of the wire mesh and in contact with metallic portions thereof. The XRO film can be capable of absorbing at least a portion of X-ray energy thereby creating an interference pattern when the XRO film is coupled with an electronic circuit and placed between an X-ray source and an X-ray detector and subjected to radiographic inspection. The interference pattern can create sufficient visual static to effectively obscure circuit lines in the electronic circuit when subjected to radiographic inspection techniques. The XRO film can be substantially thinner than existing solutions for preventing X-ray inspection with an exemplary embodiment being no more than 5 mils thick. The metallic XRO film can also provide electromagnetic shielding and/or heat dissipation for electronic circuits.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: December 6, 2016
    Assignee: Lockheed Martin Corporation
    Inventors: Stephen Gonya, Jesse Iannon
  • Publication number: 20160338192
    Abstract: A method of producing a non-planar conforming circuit on a non-planar surface includes creating a first set of conforming layers. The first set of conforming layers is created by applying an oxide dielectric layer to the surface, applying a conductive material layer to the oxide dielectric layer, applying a resist layer to the conductive material layer, patterning the resist layer according to a desired circuit layout, etching the surface to remove exposed conductive material, and stripping the resist layer. The process may be repeated to form multiple layers of conforming circuits with electrical connections between layers formed by blind microvias. The resulting set of conforming layers can be sealed.
    Type: Application
    Filed: July 28, 2016
    Publication date: November 17, 2016
    Applicant: Lockheed Martin Corporation
    Inventors: Stephen GONYA, James Sean EICHE, James PATTERSON, Kenneth R. TWIGG
  • Publication number: 20160155711
    Abstract: An X-ray obscuration (XRO) film comprising one or more metallic wire mesh layers and an adjacent layer of indium foil having portions which extend into openings of the wire mesh and in contact with metallic portions thereof. The XRO film can be capable of absorbing at least a portion of X-ray energy thereby creating an interference pattern when the XRO film is coupled with an electronic circuit and placed between an X-ray source and an X-ray detector and subjected to radiographic inspection. The interference pattern can create sufficient visual static to effectively obscure circuit lines in the electronic circuit when subjected to radiographic inspection techniques. The XRO film can be substantially thinner than existing solutions for preventing X-ray inspection with an exemplary embodiment being no more than 5 mils thick. The metallic XRO film can also provide electromagnetic shielding and/or heat dissipation for electronic circuits.
    Type: Application
    Filed: February 3, 2016
    Publication date: June 2, 2016
    Inventors: Stephen GONYA, Jesse IANNON
  • Publication number: 20160128185
    Abstract: A method for making conformal non-planar multi-layer circuitry is described. The method can include providing a substrate having a non-planar surface and depositing a first conformal dielectric layer on the substrate, the first conformal dielectric layer conforming to the non-planar surface of the substrate and having a non-planar surface. The method can also include applying a first conformal circuitry layer on the first conformal dielectric layer. The method can include depositing a second conformal dielectric layer on the first conformal circuitry layer, the second conformal dielectric layer conforming to a non-planar surface of the first conformal circuitry layer, and applying a second conformal circuitry layer on the second conformal dielectric layer. Successive layers can be sequentially deposited. Microvias may provide electrical connections between circuit layers.
    Type: Application
    Filed: January 12, 2016
    Publication date: May 5, 2016
    Inventors: Stephen Gonya, Kenn Twigg, Jim Patterson
  • Publication number: 20160105970
    Abstract: A method of producing a non-planar conforming circuit on a non-planar surface includes creating a first set of conforming layers. The first set of conforming layers is created by applying an oxide dielectric layer to the surface, applying a conductive material layer to the oxide dielectric layer, applying a resist layer to the conductive material layer, patterning the resist layer according to a desired circuit layout, etching the surface to remove exposed conductive material, and stripping the resist layer. The process may be repeated to form multiple layers of conforming circuits with electrical connections between layers formed by blind microvias. The resulting set of conforming layers can be sealed.
    Type: Application
    Filed: October 10, 2014
    Publication date: April 14, 2016
    Applicant: Lockheed Martin Corporation
    Inventors: Stephen Gonya, James Sean Eiche, James Patterson, Kenneth R. Twigg
  • Patent number: 9263400
    Abstract: An X-ray obscuration (XRO) film comprising one or more metallic wire mesh layers and an adjacent layer of indium foil having portions which extend into openings of the wire mesh and in contact with metallic portions thereof. The XRO film can be capable of absorbing at least a portion of X-ray energy thereby creating an interference pattern when the XRO film is coupled with an electronic circuit and placed between an X-ray source and an X-ray detector and subjected to radiographic inspection. The interference pattern can create sufficient visual static to effectively obscure circuit lines in the electronic circuit when subjected to radiographic inspection techniques. The XRO film can be substantially thinner than existing solutions for preventing X-ray inspection with an exemplary embodiment being no more than 5 mils thick. The metallic XRO film can also provide electromagnetic shielding and/or heat dissipation for electronic circuits.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: February 16, 2016
    Assignee: Lockheed Martin Corporation
    Inventors: Stephen Gonya, Jesse Iannon
  • Patent number: 9258907
    Abstract: A method for making conformal non-planar multi-layer circuitry is described. The method can include providing a substrate having a non-planar surface and depositing a first conformal dielectric layer on the substrate, the first conformal dielectric layer conforming to the non-planar surface of the substrate and having a non-planar surface. The method can also include applying a first conformal circuitry layer on the first conformal dielectric layer. The method can include depositing a second conformal dielectric layer on the first conformal circuitry layer, the second conformal dielectric layer conforming to a non-planar surface of the first conformal circuitry layer, and applying a second conformal circuitry layer on the second conformal dielectric layer. Successive layers can be sequentially deposited. Microvias may provide electrical connections between circuit layers.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: February 9, 2016
    Assignee: Lockheed Martin Corporation
    Inventors: Stephen Gonya, Kenn Twigg, Jim Patterson
  • Publication number: 20150303154
    Abstract: An X-ray obscuration (XRO) film comprising one or more metallic wire mesh layers and an adjacent layer of indium foil having portions which extend into openings of the wire mesh and in contact with metallic portions thereof. The XRO film can be capable of absorbing at least a portion of X-ray energy thereby creating an interference pattern when the XRO film is coupled with an electronic circuit and placed between an X-ray source and an X-ray detector and subjected to radiographic inspection. The interference pattern can create sufficient visual static to effectively obscure circuit lines in the electronic circuit when subjected to radiographic inspection techniques. The XRO film can be substantially thinner than existing solutions for preventing X-ray inspection with an exemplary embodiment being no more than 5 mils thick. The metallic XRO film can also provide electromagnetic shielding and/or heat dissipation for electronic circuits.
    Type: Application
    Filed: July 1, 2015
    Publication date: October 22, 2015
    Inventors: Stephen Gonya, Jesse Iannon
  • Publication number: 20150282317
    Abstract: In some embodiments, flat electrical contact pads may be fabricated along a routed edge face of a printed wiring board (PWB). Some embodiments of the edge pads may, for example, be perpendicular to a plane of the printed wiring board. In some embodiments, the edge pads may be of a specified length and/or width. Some embodiments of the edge pads may, for example, have a surface finish suitable for soldering and/or for direct contact interconnections. In some embodiments, the edge pads may, for example, be configured for electrical connection to an adjoining device (e.g., PWB) with mating pads to form a tiled array configuration of interconnected devices (e.g., PWBs).
    Type: Application
    Filed: March 28, 2014
    Publication date: October 1, 2015
    Applicant: Lockheed Martin Corporation
    Inventors: Stephen Gonya, Timothy J. Dougherty, Jeffrey Fisher, Michael Hochdoerfer, Kenneth R. Twigg, Eugene J. Urda
  • Patent number: 9087617
    Abstract: An X-ray obscuration (XRO) film comprising one or more metallic wire mesh layers and an adjacent layer of indium foil having portions which extend into openings of the wire mesh and in contact with metallic portions thereof. The XRO film can be capable of absorbing at least a portion of X-ray energy thereby creating an interference pattern when the XRO film is coupled with an electronic circuit and placed between an X-ray source and an X-ray detector and subjected to radiographic inspection. The interference pattern can create sufficient visual static to effectively obscure circuit lines in the electronic circuit when subjected to radiographic inspection techniques. The XRO film can be substantially thinner than existing solutions for preventing X-ray inspection with an exemplary embodiment being no more than 5 mils thick. The metallic XRO film can also provide electromagnetic shielding and/or heat dissipation for electronic circuits.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: July 21, 2015
    Assignee: Lockheed Martin Corporation
    Inventors: Stephen Gonya, Jesse Iannon
  • Publication number: 20140374627
    Abstract: An X-ray obscuration (XRO) film comprising one or more metallic wire mesh layers and an adjacent layer of indium foil having portions which extend into openings of the wire mesh and in contact with metallic portions thereof. The XRO film can be capable of absorbing at least a portion of X-ray energy thereby creating an interference pattern when the XRO film is coupled with an electronic circuit and placed between an X-ray source and an X-ray detector and subjected to radiographic inspection. The interference pattern can create sufficient visual static to effectively obscure circuit lines in the electronic circuit when subjected to radiographic inspection techniques. The XRO film can be substantially thinner than existing solutions for preventing X-ray inspection with an exemplary embodiment being no more than 5 mils thick. The metallic XRO film can also provide electromagnetic shielding and/or heat dissipation for electronic circuits.
    Type: Application
    Filed: July 8, 2014
    Publication date: December 25, 2014
    Inventors: Stephen Gonya, Jesse Iannon