Patents by Inventor Stephen M. Gates

Stephen M. Gates has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7892648
    Abstract: A low-k dielectric material with increased cohesive strength for use in electronic structures including interconnect and sensing structures is provided that includes atoms of Si, C, O, and H in which a fraction of the C atoms are bonded as Si—CH3 functional groups, and another fraction of the C atoms are bonded as Si—R—Si, wherein R is phenyl, —[CH2]n— where n is greater than or equal to 1, HC?CH, C?CH2, C?C or a [S]n linkage, where n is a defined above.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: February 22, 2011
    Assignee: International Business Machines Corporation
    Inventors: Daniel C. Edelstein, Stephen M. Gates, Alfred Grill, Michael Lane, Robert D. Miller, Deborah A. Neumayer, Son Van Nguyen
  • Patent number: 7863749
    Abstract: A dense boron-based or phosphorus-based dielectric material is provided. Specifically, the present invention provides a dense boron-based dielectric material comprised of boron and at least one of carbon, nitrogen, and hydrogen or a dense phosphorus-based dielectric comprised of phosphorus and nitrogen. The present invention also provides electronic structures containing the dense boron-based or phosphorus-based dielectric as an etch stop, a dielectric Cu capping material, a CMP stop layer, and/or a reactive ion etching mask in a ULSI back-end-of-the-line (BEOL) interconnect structure. A method of forming the inventive boron-based or phosphorus-based dielectric as well as the electronic structure containing the same are also described in the present invention.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: January 4, 2011
    Assignee: International Business Machines Corporation
    Inventors: Stephen M. Gates, Robert D. Miller
  • Patent number: 7847402
    Abstract: A chip is provided which includes a back-end-of-line (“BEOL”) interconnect structure. The BEOL interconnect structure includes a plurality of interlevel dielectric (“ILD”) layers which include a dielectric material curable by ultraviolet (“UV”) radiation. A plurality of metal interconnect wiring layers are embedded in the plurality of ILD layers. Dielectric barrier layers cover the plurality of metal interconnect wiring layers, the dielectric barrier layers being adapted to reduce diffusion of materials between the metal interconnect wiring layers and the ILD layers. One of more of the dielectric barrier layers is adapted to retain compressive stress while withstanding UV radiation sufficient to cure the dielectric material of the ILD layers, making the BEOL structure better capable of avoiding deformation due to thermal and/or mechanical stress.
    Type: Grant
    Filed: February 20, 2007
    Date of Patent: December 7, 2010
    Assignees: International Business Machines Corporation, Chartered Semiconductor Manufacturing, Ltd, Samsung Electronics Co., Ltd
    Inventors: Darryl D. Restaino, Griselda Bonilla, Christos D. Dimitrakopoulos, Stephen M. Gates, Jae H. Kim, Michael W. Lane, Xiao H. Liu, Son V. Nguyen, Thomas M. Shaw, Johnny Widodo
  • Patent number: 7726008
    Abstract: A magnetic-field sensor device comprises at least two electrodes; an insulating layer separating the at least two electrodes; at least one layer of chemically-synthesized magnetic nanoparticles disposed at or above a level with the insulating layer, and disposed between the at least two electrodes; and an organic spacer surrounding each of the chemically-synthesized magnetic nanoparticles. A deviation between diameters of different ones of the nanoparticles is less than 15%. Moreover, the chemically-synthesized magnetic nanoparticles range in size between 2 nm and 20 nm in diameter.
    Type: Grant
    Filed: January 7, 2005
    Date of Patent: June 1, 2010
    Assignee: International Business Machines Corporation
    Inventors: Charles T. Black, Stephen M. Gates, Christopher B. Murray, Robert L. Sandstrom
  • Patent number: 7674521
    Abstract: The present invention provides a porous composite material in which substantially all of the pores within the composite material are small having a diameter of about 5 nm or less and with a narrow PSD. The inventive composite material is also characterized by the substantial absence of the broad distribution of larger sized pores which is prevalent in prior art porous composite materials. The porous composite material includes a first solid phase having a first characteristic dimension and a second solid phase comprised of pores having a second characteristic dimension, wherein the characteristic dimensions of at least one of said phases is controlled to a value of about 5 nm or less.
    Type: Grant
    Filed: July 27, 2005
    Date of Patent: March 9, 2010
    Assignee: International Business Machines Corporation
    Inventors: Stephen M. Gates, Alfred Grill, Deborah A. Neumayer, Son Nguyen, Vishnubhai V. Patel
  • Publication number: 20100009161
    Abstract: Disclosed is a structure and method for forming a structure including a SiCOH layer having increased mechanical strength. The structure includes a substrate having a layer of dielectric or conductive material, a layer of oxide on the layer of dielectric or conductive material, the oxide layer having essentially no carbon, a graded transition layer on the oxide layer, the graded transition layer having essentially no carbon at the interface with the oxide layer and gradually increasing carbon towards a porous SiCOH layer, and a porous SiCOH (pSiCOH) layer on the graded transition layer, the porous pSiCOH layer having an homogeneous composition throughout the layer. The method includes a process wherein in the graded transition layer, there are no peaks in the carbon concentration and no dips in the oxygen concentration.
    Type: Application
    Filed: August 27, 2009
    Publication date: January 14, 2010
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, APPLIED MATERIALS, INC.
    Inventors: Daniel C. Edelstein, Alexandros Demos, Stephen M. Gates, Alfred Grill, Steven E. Molis, Vu Ngoc Tran Nguyen, Steven Reiter, Darryl D. Restaino, Kang Sub Yim
  • Publication number: 20090311859
    Abstract: A method of fabricating an interconnect structure on a substrate includes steps of: providing a dielectric with at least one etched opening; filling the at least one etched opening with at least one conductive material; planarizing the conductive material to provide a planarized structure; subjecting the planarized structure to a plasma preclean process; and exposing the planarized structure to a silylating repair agent which is a silane derivative; and forming a dielectric cap layer on the planarized structure.
    Type: Application
    Filed: August 19, 2009
    Publication date: December 17, 2009
    Inventors: Griselda Bonilla, Stephen M. Gates, Shom Ponoth, Satyanarayana V. Nitta, Sampath Purushothaman
  • Publication number: 20090297729
    Abstract: The present invention provides a porous composite material in which substantially all of the pores within the composite material are small having a diameter of about 5 nm or less and with a narrow PSD. The inventive composite material is also characterized by the substantial absence of the broad distribution of larger sized pores which is prevalent in prior art porous composite materials. The porous composite material includes a first solid phase having a first characteristic dimension and a second solid phase comprised of pores having a second characteristic dimension, wherein the characteristic dimensions of at least one of said phases is controlled to a value of about 5 nm or less.
    Type: Application
    Filed: August 8, 2009
    Publication date: December 3, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen M. Gates, Alfred Grill, Deborah A. Neumayer, Son Nguyen, Vishnubhai V. Patel
  • Patent number: 7615482
    Abstract: Disclosed is a structure and method for forming a structure including a SiCOH layer having increased mechanical strength. The structure includes a substrate having a layer of dielectric or conductive material, a layer of oxide on the layer of dielectric or conductive material, the oxide layer having essentially no carbon, a graded transition layer on the oxide layer, the graded transition layer having essentially no carbon at the interface with the oxide layer and gradually increasing carbon towards a porous SiCOH layer, and a porous SiCOH (pSiCOH) layer on the graded transition layer, the porous pSiCOH layer having an homogeneous composition throughout the layer. The method includes a process wherein in the graded transition layer, there are no peaks in the carbon concentration and no dips in the oxygen concentration.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: November 10, 2009
    Assignees: International Business Machines Corporation, Applied Materials, Inc.
    Inventors: Daniel C. Edelstein, Alexandros Demos, Stephen M. Gates, Alfred Grill, Steven E. Molis, Vu Ngoc Tran Nguyen, Steven Reiter, Darryl D. Restaino, Kang Sub Yim
  • Publication number: 20090203225
    Abstract: A method of fabricating a dielectric material that has an ultra low dielectric constant (or ultra low k) using at least one organosilicon precursor is described. The organosilicon precursor employed in the present invention includes a molecule containing both an Si—O structure and a sacrificial organic group, as a leaving group. The use of an organosilicon precursor containing a molecular scale sacrificial leaving group enables control of the pore size at the nanometer scale, control of the compositional and structural uniformity and simplifies the manufacturing process. Moreover, fabrication of a dielectric film from a single precursor enables better control of the final porosity in the film and a narrower pore size distribution resulting in better mechanical properties at the same value of dielectric constant.
    Type: Application
    Filed: April 17, 2009
    Publication date: August 13, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen M. Gates, Alfred Grill, Robert D. Miller, Deborah A. Neumayer, Son Nguyen
  • Publication number: 20090181178
    Abstract: A low-k dielectric material with increased cohesive strength for use in electronic structures including interconnect and sensing structures is provided that includes atoms of Si, C, O, and H in which a fraction of the C atoms are bonded as Si—CH3 functional groups, and another fraction of the C atoms are bonded as Si—R—Si, wherein R is phenyl, —[CH2]n— where n is greater than or equal to 1, HC?CH, C?CH2, C?C or a [S]n linkage, where n is a defined above.
    Type: Application
    Filed: January 16, 2009
    Publication date: July 16, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Daniel C. Edelstein, Stephen M. Gates, Alfred Grill, Michael Lane, Qinghuang Lin, Robert D. Miller, Deborah A. Neumayer, Son Van Nguyen
  • Patent number: 7521377
    Abstract: A method of fabricating a dielectric material that has an ultra low dielectric constant (or ultra low k) using at least one organosilicon precursor is described. The organosilicon precursor employed in the present invention includes a molecule containing both an Si—O structure and a sacrificial organic group, as a leaving group. The use of an organosilicon precursor containing a molecular scale sacrificial leaving group enables control of the pore size at the nanometer scale, control of the compositional and structural uniformity and simplifies the manufacturing process. Moreover, fabrication of a dielectric film from a single precursor enables better control of the final porosity in the film and a narrower pore size distribution resulting in better mechanical properties at the same value of dielectric constant.
    Type: Grant
    Filed: January 11, 2006
    Date of Patent: April 21, 2009
    Assignee: International Business Machines Corporation
    Inventors: Stephen M. Gates, Alfred Grill, Robert D. Miller, Deborah A. Neumayer, Son Nguyen
  • Patent number: 7517790
    Abstract: A method is disclosed of repairing wire bond damage on semiconductor chips such as high speed semiconductor microprocessors, application specific integrated circuits (ASICs), and other high speed integrated circuit devices, particularly devices using low-K dielectric materials. The method involves surface modification using reactive liquids. In a preferred embodiment, the method comprises applying a silicon-containing liquid reagent precursor such as TEOS to the surface of the chip and allowing the liquid reagent to react with moisture to form a solid dielectric plug or film (50) to produce a barrier against moisture ingress, thereby enhancing the temperature/humidity/bias (THB) performance of such semiconductor devices.
    Type: Grant
    Filed: February 8, 2005
    Date of Patent: April 14, 2009
    Assignee: International Business Machines Corporation
    Inventors: John A. Fitzsimmons, Stephen M. Gates, Michael W. Lane, Eric G. Liniger
  • Publication number: 20090061649
    Abstract: A porous SiCOH (e.g., p-SiCOH) dielectric film in which the stress change caused by increased tetrahedral strain is minimized by post treatment in unsaturated Hydrocarbon ambient. The inventive p-SiCOH dielectric film has more —(CHx) and less Si—O—H and Si—H bondings as compared to prior art p-SiCOH dielectric films. Moreover, a stable pSiOCH dielectric film is provided in which the amount of Si—OH (silanol) and Si—H groups at least within the pores has been reduced by about 90% or less by the post treatment. Hence, the inventive p-SiCOH dielectric film has hydrophobicity improvement as compared with prior art p-SiCOH dielectric films. In the present invention, a p-SiCOH dielectric film is produced that is flexible since the pores of the inventive film include stabilized crosslinking —(CHx)— chains wherein x is 1, 2 or 3 therein.
    Type: Application
    Filed: August 28, 2007
    Publication date: March 5, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen M. Gates, Alfred Grill, Son Nguyen, Satyanarayana V. Nitta, Thomas M. Shaw
  • Publication number: 20090061237
    Abstract: A porous SiCOH (e.g., p-SiCOH) dielectric film in which the stress change caused by increased tetrahedral strain is minimized by post treatment in unsaturated Hydrocarbon ambient. The inventive p-SiCOH dielectric film has more —(CHx) and less Si—O—H and Si—H bondings as compared to prior art p-SiCOH dielectric films. Moreover, a stable pSiOCH dielectric film is provided in which the amount of Si—OH (silanol) and Si—H groups at least within the pores has been reduced by about 90% or less by the post treatment. Hence, the inventive p-SiCOH dielectric film has hydrophobicity improvement as compared with prior art p-SiCOH dielectric films. In the present invention, a p-SiCOH dielectric film is produced that is flexible since the pores of the inventive film include stabilized crosslinking —(CHx)— chains wherein x is 1,2 or 3 therein.
    Type: Application
    Filed: August 28, 2007
    Publication date: March 5, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen M. Gates, Alfred Grill, Son Nguyen, Satyanarayana V. Nitta, Thomas M. Shaw
  • Patent number: 7485341
    Abstract: A method for forming a self aligned pattern on an existing pattern on a substrate comprising applying a coating of the masking material to the substrate; and allowing at least a portion of the masking material to preferentially attach to portions of the existing pattern. The pattern is comprised of a first set of regions of the substrate having a first atomic composition and a second set of regions of the substrate having a second atomic composition different from the first composition. The first set of regions may include one or more metal elements and the second set of regions may include a dielectric. The masking material may comprise a polymer containing a reactive grafting site that selectively binds to the portions of the pattern.
    Type: Grant
    Filed: April 23, 2003
    Date of Patent: February 3, 2009
    Assignee: International Business Machines Corporation
    Inventors: Matthew E Colburn, Stephen M Gates, Jeffrey C Hedrick, Elbert Huang, Satyanarayana V Nitta, Sampath Purushothaman, Muthumanickam Sankarapandian
  • Patent number: 7485582
    Abstract: The present invention provides a hardmask that is located on a surface of a low k dielectric material having at least one conductive feature embedded therein. The hardmask includes a lower region of a hermetic oxide material located adjacent to the low k dielectric material and an upper region comprising atoms of Si, C and H located above the hermetic oxide material. The present invention also provides a method of fabricating the inventive hardmask as well as a method to form an interconnect structure containing the same.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: February 3, 2009
    Assignee: International Business Machines Corporation
    Inventors: Son Van Nguyen, Michael Lane, Stephen M. Gates, Xiao H. Liu, Vincent J. McGahay, Sanjay C. Mehta, Thomas M. Shaw
  • Patent number: 7479306
    Abstract: A low-k dielectric material with increased cohesive strength for use in electronic structures including interconnect and sensing structures is provided that includes atoms of Si, C, O, and H in which a fraction of the C atoms are bonded as Si—CH3 functional groups, and another fraction of the C atoms are bonded as Si—R—Si, wherein R is phenyl, —[CH2]n— where n is greater than or equal to 1, HC?CH, C?CH2, C?C or a [S]n linkage, where n is a defined above.
    Type: Grant
    Filed: May 18, 2005
    Date of Patent: January 20, 2009
    Assignee: International Business Machines Corporation
    Inventors: Daniel C. Edelstein, Stephen M. Gates, Alfred Grill, Michael Lane, Qinghuang Lin, Robert D. Miller, Deborah A. Neumayer, Son Van Nguyen
  • Publication number: 20080277796
    Abstract: A dense boron-based or phosphorus-based dielectric material is provided. Specifically, the present invention provides a dense boron-based dielectric material comprised of boron and at least one of carbon, nitrogen, and hydrogen or a dense phosphorus-based dielectric comprised of phosphorus and nitrogen. The present invention also provides electronic structures containing the dense boron-based or phosphorus-based dielectric as an etch stop, a dielectric Cu capping material, a CMP stop layer, and/or a reactive ion etching mask in a ULSI back-end-of-the-line (BEOL) interconnect structure. A method of forming the inventive boron-based or phosphorus-based dielectric as well as the electronic structure containing the same are also described in the present invention.
    Type: Application
    Filed: July 25, 2008
    Publication date: November 13, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen M. Gates, Robert D. Miller
  • Publication number: 20080265415
    Abstract: A method for forming a self aligned pattern on an existing pattern on a substrate comprising applying a coating of a solution containing a masking material in a carrier, the masking material having an affinity for portions of the existing pattern; and allowing at least a portion of the masking material to preferentially assemble to the portions of the existing pattern. The pattern may be comprised of a first set of regions of the substrate having a first atomic composition and a second set of regions of the substrate having a second atomic composition different from the first composition. The first set of regions may include one or more metal elements and the second set of regions may include a dielectric. The first and second regions may be treated to have different surface properties. Structures made in accordance with the method. Compositions useful for practicing the method.
    Type: Application
    Filed: June 30, 2008
    Publication date: October 30, 2008
    Inventors: Matthew E. Colburn, Stephen M. Gates, Jeffrey C. Hedrick, Elbert Huang, Satyanarayana V. Nitta, Sampath Purushothaman, Muthumanickam Sankarapandian