Patents by Inventor Stephen McConnell Gates

Stephen McConnell Gates has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8097932
    Abstract: A method for fabricating a SiCOH dielectric material comprising Si, C, O and H atoms from a single organosilicon precursor with a built-in organic porogen is provided. The single organosilicon precursor with a built-in organic porogen is selected from silane (SiH4) derivatives having the molecular formula SiRR1R2R3, disiloxane derivatives having the molecular formula R4R5R6—Si—O—Si—R7R8R9, and trisiloxane derivatives having the molecular formula R10R11R12—Si—O—Si—R13R14—O—Si—R15R16R17 where R and R1-17 may or may not be identical and are selected from H, alkyl, alkoxy, epoxy, phenyl, vinyl, allyl, alkenyl or alkynyl groups that may be linear, branched, cyclic, polycyclic and may be functionalized with oxygen, nitrogen or fluorine containing substituents. In addition to the method, the present application also provides SiCOH dielectrics made from the inventive method as well as electronic structures that contain the same.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: January 17, 2012
    Assignee: International Business Machines Corporation
    Inventors: Son Van Nguyen, Stephen McConnell Gates, Deborah A. Neumayer, Alfred Grill
  • Patent number: 7811926
    Abstract: Interconnect structures possessing an organosilicate glass based material for 90 nm and beyond BEOL technologies in which a multilayer hardmask using a line-first approach are described. The interconnect structure of the invention achieves respective improved device/interconnect performance and affords a substantial dual damascene process window owing to the non-exposure of the OSG material to resist removal plasmas and because of the alternating inorganic/organic multilayer hardmask stack. The latter feature implies that for every inorganic layer that is being etched during a specific etch step, the corresponding pattern transfer layer in the field is organic and vice-versa.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: October 12, 2010
    Assignee: International Business Machines Corporation
    Inventors: Nicholas C. M. Fuller, Stephen McConnell Gates, Timothy J. Dalton
  • Publication number: 20090304951
    Abstract: A method for forming a ultralow dielectric constant layer with controlled biaxial stress is described incorporating the steps of forming a layer containing Si, C, O and H by one of PECVD and spin-on coating and curing the film in an environment containing very low concentrations of oxygen and water each less than 10 ppm. A material is also described by using the method with a dielectric constant of not more than 2.8. The invention overcomes the problem of forming films with low biaxial stress less than 46 MPa.
    Type: Application
    Filed: August 17, 2009
    Publication date: December 10, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Christos Dimitrios Dimitrakopoulos, Stephen McConnell Gates, Alfred Grill, Michael Wayne Lane, Eric Gerhard Liniger, Xiao Hu Liu, Son Van Nguyen, Deborah Ann Neumayer, Thomas McCarroll Shaw
  • Publication number: 20090297823
    Abstract: The present invention provides a multiphase, ultra low k film which exhibits improved elastic modulus and hardness as well as various methods for forming the same. The multiphase, ultra low k dielectric film includes atoms of Si, C, O and H, has a dielectric constant of about 2.4 or less, nanosized pores or voids, an elastic modulus of about 5 or greater and a hardness of about 0.7 or greater. A preferred multiphase, ultra low k dielectric film includes atoms of Si, C, O and H, has a dielectric constant of about 2.2 or less, nanosized pores or voids, an elastic modulus of about 3 or greater and a hardness of about 0.3 or greater. The multiphase, ultra low k film is prepared by plasma enhanced chemical vapor deposition in which one of the following alternatives is utilized: at least one precursor gas comprising siloxane molecules containing at least three Si—O bonds; or at least one precursor gas comprising molecules containing reactive groups that are sensitive to e-beam radiation.
    Type: Application
    Filed: August 14, 2009
    Publication date: December 3, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen McConnell Gates, Alfred Grill
  • Publication number: 20090146265
    Abstract: A method for fabricating a SiCOH dielectric material comprising Si, C, O and H atoms from a single organosilicon precursor with a built-in organic porogen is provided. The single organosilicon precursor with a built-in organic porogen is selected from silane (SiH4) derivatives having the molecular formula SiRR1R2R3, disiloxane derivatives having the molecular formula R4R5R6—Si—O—Si—R7R8R9, and trisiloxane derivatives having the molecular formula R10R11R12—Si—O—Si—R13R14—O—Si—R15R16R17 where R and R1-17 may or may not be identical and are selected from H, alkyl, alkoxy, epoxy, phenyl, vinyl, allyl, alkenyl or alkynyl groups that may be linear, branched, cyclic, polycyclic and may be functionalized with oxygen, nitrogen or fluorine containing substituents. In addition to the method, the present application also provides SiCOH dielectrics made from the inventive method as well as electronic structures that contain the same.
    Type: Application
    Filed: February 13, 2009
    Publication date: June 11, 2009
    Applicant: International Business Machines Corporation
    Inventors: Son Van Nguyen, Stephen McConnell Gates, Deborah A. Neumayer, Alfred Grill
  • Patent number: 7491658
    Abstract: A method for fabricating a SiCOH dielectric material comprising Si, C, O and H atoms from a single organosilicon precursor with a built-in organic porogen is provided. The single organosilicon precursor with a built-in organic porogen is selected from silane (SiH4) derivatives having the molecular formula SiRR1R2R3, disiloxane derivatives having the molecular formula R4R5R6—Si—O—Si—R7R8R9, and trisiloxane derivatives having the molecular formula R10R11R12—Si—O—Si—R13R14—O—Si—R15R16R17 where R and R1-17 may or may not be identical and are selected from H, alkyl, alkoxy, epoxy, phenyl, vinyl, allyl, alkenyl or alkynyl groups that may be linear, branched, cyclic, polycyclic and may be functionalized with oxygen, nitrogen or fluorine containing substituents. In addition to the method, the present application also provides SiCOH dielectrics made from the inventive method as well as electronic structures that contain the same.
    Type: Grant
    Filed: October 13, 2004
    Date of Patent: February 17, 2009
    Assignee: International Business Machines Corporation
    Inventors: Son Van Nguyen, Stephen McConnell Gates, Deborah A. Neumayer, Alfred Grill
  • Publication number: 20080311744
    Abstract: Interconnect structures possessing an organosilicate glass based material for 90 nm and beyond BEOL technologies in which a multilayer hardmask using a line-first approach are described. The interconnect structure of the invention achieves respective improved device/interconnect performance and affords a substantial dual damascene process window owing to the non-exposure of the OSG material to resist removal plasmas and because of the alternating inorganic/organic multilayer hardmask stack. The latter feature implies that for every inorganic layer that is being etched during a specific etch step, the corresponding pattern transfer layer in the field is organic and vice-versa.
    Type: Application
    Filed: August 26, 2008
    Publication date: December 18, 2008
    Applicant: International Business Machines Corporation
    Inventors: Nicholas C.M. Fuller, Stephen McConnell Gates, Timothy J. Dalton
  • Publication number: 20080286494
    Abstract: A method for forming a ultralow dielectric constant layer with controlled biaxial stress is described incorporating the steps of forming a layer containing Si, C, O and H by one of PECVD and spin-on coating and curing the film in an environment containing very low concentrations of oxygen and water each less than 10 ppm. A material is also described by using the method with a dielectric constant of not more than 2.8. The invention overcomes the problem of forming films with low biaxial stress less than 46 MPa.
    Type: Application
    Filed: March 7, 2008
    Publication date: November 20, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Christos Dimitrios Dimitrakopoulos, Stephen McConnell Gates, Alfred Grill, Michael Wayne Lane, Eric Gerhard Liniger, Xiao Hu Liu, Son Van Nguyen, Deborah Ann Neumayer, Thomas McCarroll Shaw
  • Patent number: 7371461
    Abstract: Interconnect structures possessing an organosilicate glass based material for 90 nm and beyond BEOL technologies in which a multilayer hardmask using a line-first approach are described. The interconnect structure of the invention achieves respective improved device/interconnect performance and affords a substantial dual damascene process window owing to the non-exposure of the OSG material to resist removal plasmas and because of the alternating inorganic/organic multilayer hardmask stack. The latter feature implies that for every inorganic layer that is being etched during a specific etch step, the corresponding pattern transfer layer in the field is organic and vice-versa.
    Type: Grant
    Filed: January 13, 2005
    Date of Patent: May 13, 2008
    Assignee: International Business Machines Corporation
    Inventors: Nicholas C. M. Fuller, Stephen McConnell Gates, Timothy J. Dalton
  • Patent number: 7357977
    Abstract: A method for forming a ultralow dielectric constant layer with controlled biaxial stress is described incorporating the steps of forming a layer containing Si, C, O and H by one of PECVD and spin-on coating and curing the film in an environment containing very low concentrations of oxygen and water each less than 10 ppm. A material is also described by using the method with a dielectric constant of not more than 2.8. The invention overcomes the problem of forming films with low biaxial stress less than 46 MPa.
    Type: Grant
    Filed: January 13, 2005
    Date of Patent: April 15, 2008
    Assignee: International Business Machines Corporation
    Inventors: Christos Dimitrios Dimitrakopoulos, Stephen McConnell Gates, Alfred Grill, Michael Wayne Lane, Eric Gerhard Liniger, Xiao Hu Liu, Son Van Nguyen, Deborah Ann Neumayer, Thomas McCarroll Shaw
  • Patent number: 7288292
    Abstract: The present invention provides a multiphase, ultra low k film which exhibits improved elastic modulus and hardness as well as various methods for forming the same. The multiphase, ultra low k dielectric film includes atoms of Si, C, O and H, has a dielectric constant of about 2.4 or less, nanosized pores or voids, an elastic modulus of about 5 or greater and a hardness of about 0.7 or greater. A preferred multiphase, ultra low k dielectric film includes atoms of Si, C, O and H, has a dielectric constant of about 2.2 or less, nanosized pores or voids, an elastic modulus of about 3 or greater and a hardness of about 0.3 or greater. The multiphase, ultra low k film is prepared by plasma enhanced chemical vapor deposition in which one of the following alternatives is utilized: at least one precursor gas comprising siloxane molecules containing at least three Si—O bonds; or at least one precursor gas comprising molecules containing reactive groups that are sensitive to e-beam radiation.
    Type: Grant
    Filed: March 18, 2003
    Date of Patent: October 30, 2007
    Assignee: International Business Machines Corporation
    Inventors: Stephen McConnell Gates, Alfred Grill
  • Patent number: 7256146
    Abstract: The present invention comprises an interconnect structure including a metal, interlayer dielectric and a ceramic diffusion barrier formed therebetween, where the ceramic diffusion barrier has a composition SivNwCxOyHz, where 0.1?v?0.9, 0?w?0.5, 0.01?x?0.9, 0?y?0.7, 0.01?z?0.8 for v+w+x+y+z=1. The ceramic diffusion barrier acts as a diffusion barrier to metals, i.e., copper. The present invention also comprises a method for forming the inventive ceramic diffusion barrier including the steps depositing a polymeric preceramic having a composition SivNwCxOyHz, where 0.1<v<0.8, 0<w<0.8, 0.05<x<0.8, 0<y<0.3, 0.05<z<0.8 for v+w+x+y+z=1 and then converting the polymeric preceramic layer into a ceramic diffusion barrier by thermal methods.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: August 14, 2007
    Assignee: International Business Machines Corporation
    Inventors: Stephan A. Cohen, Stephen McConnell Gates, Jeffrey C. Hedrick, Elbert E. Huang, Dirk Pfeiffer
  • Patent number: 7252875
    Abstract: A diffusion barrier useful in semiconductor electronic devices, such as multi-level interconnect wiring structures, is provided. The diffusion barrier is characterized as having a low-dielectric constant of less than 3.5, preferably less than 3.0, as well as being capable of substantially preventing Cu and/or oxygen from diffusing into the active device areas of the electronic device. Since the diffusion barrier has a low-dielectric constant, the diffusion barrier has only a minor effect on the effective dielectric constant of the interconnect structure. The low-k diffusion barrier includes atoms of Si, C, H and N. The N atoms are non-uniformly distributed within the low-k diffusion barrier. Optionally, the low-k diffusion barrier may include atoms of Ge, O, halogens such as F or any combination thereof.
    Type: Grant
    Filed: December 16, 2002
    Date of Patent: August 7, 2007
    Assignee: International Business Machines Corporation
    Inventors: Stephan A. Cohen, Stephen McConnell Gates, Alfred Grill, Vishnubhai V. Patel
  • Patent number: 6958526
    Abstract: An apparatus and method is described incorporating one or more layers of SiCOH and one or more layers of patterned conductors in an integrated circuit chip. The invention overcomes the problem of capacitance by lowering the k of the delectric and overcomes the problem of breakdown voltage and the leakage curent by tailoring the composition of SiCOH.
    Type: Grant
    Filed: January 27, 2004
    Date of Patent: October 25, 2005
    Assignee: International Business Machines Corporation
    Inventors: Stephen McConnell Gates, Alfred Grill
  • Patent number: 6943451
    Abstract: Novel semiconductor devices containing a discontinuous cap layer and possessing a relatively low dielectric constant are provide herein. The novel semiconductor devices includes at least a substrate, a first dielectric layer applied on at least a portion of the substrate, a first set of openings formed through the dielectric layer to expose the surface of the substrate so that a conductive material deposited within and filling the openings provides a first set of electrical contact conductive elements and a discontinuous layer of cap material covering at least the top of the conductive elements to provide a first set of discontinuous cap elements. Methods for forming the semiconductor devices are also provided.
    Type: Grant
    Filed: July 2, 2001
    Date of Patent: September 13, 2005
    Assignee: International Business Machines Corporation
    Inventors: Stanley Joseph Whitehair, Stephen McConnell Gates, Sampath Purushothaman, Satyanarayana V. Nitta, Maurice McGlashan-Powell, Kevin S. Petrarca
  • Patent number: 6940173
    Abstract: The present invention comprises an interconnect structure including a metal, interlayer dielectric and a ceramic diffusion barrier formed therebetween, where the ceramic diffusion barrier has a composition SivNwCxOyHz, where 0.1?v?0.9, 0?w?0.5, 0.01?0.5, 0.01?x?0.9,0?y?0.7,0.01?z?0.8 for v+w+x+y+z=1. The ceramic diffusion barrier acts as a diffusion barrier to metals, i.e., copper. The present invention also comprises a method for forming the inventive ceramic diffusion barrier including the steps depositing a polymeric preceramic having a composition SivNwCxOyHz, where 0.1<v<0.8, 0<w<0.8, 0.05<x<0.8, 0<y<0.3, 0.05<z<0.8 for v+w+x+y+z=1 and then converting the polymeric preceramic layer into a ceramic diffusion barrier by thermal methods.
    Type: Grant
    Filed: July 25, 2003
    Date of Patent: September 6, 2005
    Assignee: International Business Machines Corporation
    Inventors: Stephan A. Cohen, Stephen McConnell Gates, Jeffrey C. Hedrick, Elbert E. Huang, Dirk Pfeiffer
  • Patent number: 6831366
    Abstract: A low-k dielectric metal conductor interconnect structure having no micro-trenches present therein and a method of forming such a structure are provided. Specifically, the above structure is achieved by providing an interconnect structure which includes at least a multilayer of dielectric materials which are applied sequentially in a single spin apply tool and then cured in a single step and a plurality of patterned metal conductors within the multilayer of spun-on dielectrics. The control over the conductor resistance is obtained using a buried etch stop layer having a second atomic composition located between the line and via dielectric layers of porous low-k dielectrics having a first atomic composition. The inventive interconnect structure also includes a hard mask which assists in forming the interconnect structure of the dual damascene-type.
    Type: Grant
    Filed: March 25, 2003
    Date of Patent: December 14, 2004
    Assignee: International Business Machines Corporation
    Inventors: Stephen McConnell Gates, Jeffrey Curtis Hedrick, Satyanarayana V. Nitta, Sampath Purushothaman, Cristy Sensenich Tyberg
  • Publication number: 20040188674
    Abstract: An apparatus and method is described incorporating one or more layers of SiCOH and one or more layers of patterned conductors in an integrated circuit chip. The invention overcomes the problem of capacitance by lowering the k of the delectric and overcomes the problem of breakdown voltage and the leakage curent by tailoring the composition of SiCOH.
    Type: Application
    Filed: January 27, 2004
    Publication date: September 30, 2004
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen McConnell Gates, Alfred Grill
  • Patent number: 6784485
    Abstract: A semiconductor device containing a diffusion barrier layer is provided. The semiconductor device includes at least a semiconductor substrate containing conductive metal elements; and, a diffusion barrier layer applied to at least a portion of the substrate in contact with the conductive metal elements, the diffusion barrier layer having an upper surface and a lower surface and a central portion, and being formed from silicon, carbon, nitrogen and hydrogen with the nitrogen being non-uniformly distributed throughout the diffusion barrier layer. Thus, the nitrogen is more concentrated near the lower and upper surfaces of the diffusion barrier layer as compared to the central portion of the diffusion barrier layer. Methods for making the semiconductor devices are also provided.
    Type: Grant
    Filed: February 11, 2000
    Date of Patent: August 31, 2004
    Assignee: International Business Machines Corporation
    Inventors: Stephan Alan Cohen, Timothy Joseph Dalton, John Anthony Fitzsimmons, Stephen McConnell Gates, Lynne M. Gignac, Paul Charles Jamison, Kang-Wook Lee, Sampath Purushothaman, Darryl D. Restaino, Eva Simonyi, Horatio Seymour Wildman
  • Patent number: 6780499
    Abstract: A porous, low-k dielectric film that has good mechanical properties as well as a method of fabricating the film and the use of the film as a dielectric layer between metal wiring features are provided. The porous, low-k dielectric film includes a first phase of monodispersed pores having a diameter of from about 1 to about 10 nm that are substantially uniformly spaced apart and are essentially located on sites of a three-dimensional periodic lattice; and a second phase which is solid surrounding the first phase. Specifically, the second phase of the film includes (i) an ordered element that is composed of nanoparticles having a diameter of from about 1 to about 10 nm that are substantially uniformly spaced apart and are essentially arranged on sites of a three-dimensional periodic lattice, and (ii) a disordered element comprised of a dielectric material having a dielectric constant of about 2.8 or less.
    Type: Grant
    Filed: May 3, 2001
    Date of Patent: August 24, 2004
    Assignee: International Business Machines Corporation
    Inventors: Stephen McConnell Gates, Christopher B. Murray, Satyanarayana V. Nitta, Sampath Purushothaman