Patents by Inventor Steven J. Keipert

Steven J. Keipert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11707816
    Abstract: The method generally involves the steps of filling the cavities in a production tool each with an individual abrasive particle. Aligning a filled production tool and a resin coated backing for transfer of the abrasive particles to the resin coated backing. Transferring the abrasive particles from the cavities onto the resin coated backing and removing the production tool from the aligned position with the resin coated backing. Thereafter the resin layer is cured, a size coat is applied and cured and the coated abrasive article is converted to sheet, disk, or belt form by suitable converting equipment.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: July 25, 2023
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Steven J. Keipert, John T. Boden, Scott R. Culler
  • Patent number: 11607775
    Abstract: A coated abrasive disc includes a disc backing having an outer circumference. An abrasive layer is disposed on the disc backing. The abrasive layer comprises triangular abrasive platelets secured to a major surface of the disc backing by at least one binder material. The triangular abrasive platelets are outwardly disposed at regularly-spaced points along a spiral pattern extending outwardly toward the outer circumference. Each triangular abrasive platelet has respective top and bottom surfaces connected to each other, and separated by, three sidewalls. On a respective basis, one sidewall of at least 90 percent of the triangular abrasive platelets is disposed facing and proximate to the disc backing, and at least 70 percent of the triangular abrasive platelets are disposed in a recurring sequential orientation having an oscillating Z-axis rotational orientation of the first respective sidewall relative to the tangents to the spiral pattern at regularly-spaced points.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: March 21, 2023
    Assignee: 3M Innovative Properties Company
    Inventors: Thomas P. Hanschen, Steven J. Keipert, Joseph B. Eckel, Aaron K. Nienaber, Erin D. Spring, Brant A. Moegenburg, Eric M. Moore, Thomas J. Nelson
  • Patent number: 11597059
    Abstract: A coated abrasive disc includes a disc backing and an abrasive layer disposed thereon. The abrasive layer comprises abrasive elements secured to a major surface of the disc backing by at least one binder material. The abrasive elements are disposed at contiguous intersections of horizontal and vertical lines of a rectangular grid pattern. Each abrasive element has two triangular abrasive platelets, each having respective top and bottom surfaces connected to each other, and separated by, three sidewalls. On a respective basis, one sidewall of the triangular abrasive platelets is disposed facing and proximate to the disc backing. A first portion of the abrasive elements is arranged in alternating first rows wherein the triangular abrasive platelets are disposed lengthwise aligned with the vertical lines. A second portion of the abrasive elements is arranged in alternating second rows wherein the triangular abrasive platelets are disposed lengthwise aligned with the horizontal lines.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: March 7, 2023
    Assignee: 3M Innovative Properties Company
    Inventors: Thomas P. Hanschen, Steven J. Keipert, Joseph B. Eckel, Aaron K. Nienaber, Erin D. Spring, Brant A. Moegenburg, Eric M. Moore, Thomas J. Nelson
  • Patent number: 11344998
    Abstract: The method generally involves the steps of filling the cavities in a production tool each with an individual abrasive particle. Aligning a filled production tool and a resin coated backing for transfer of the abrasive particles to the resin coated backing. Transferring the abrasive particles from the cavities onto the resin coated backing and removing the production tool from the aligned position with the resin coated backing. Thereafter the resin layer is cured, a size coat is applied and cured and the coated abrasive article is converted to sheet, disk, or belt form by suitable converting equipment.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: May 31, 2022
    Assignee: 3M Innovative Properties Company
    Inventors: Scott R. Culler, John T. Boden, Steven J. Keipert, Negus B. Adefris
  • Publication number: 20220001516
    Abstract: A coated abrasive belt (100) includes a belt backing (110) and an abrasive layer disposed thereon. The abrasive layer comprises abrasive elements (160) secured to at least a portion of a major surface of the belt backing (110) by at least one binder material. The abrasive elements are disposed at contiguous intersections of horizontal (192) and vertical lines (194) of a rectangular grid pattern. Each abrasive element has at least two triangular abrasive platelets (130), each having respective top and bottom surfaces connected to each other, and separated by, three sidewalls. On a respective basis, one sidewall of the triangular abrasive platelets is disposed facing and proximate to the belt backing A first portion of the abrasive elements is arranged in alternating first rows (16) wherein the triangular abrasive platelets are disposed lengthwise aligned with the vertical lines (194).
    Type: Application
    Filed: November 14, 2019
    Publication date: January 6, 2022
    Inventors: Joseph B. Eckel, Aaron K. Nienaber, Erin D. Spring, Brant A. Moegenburg, Eric M. Moore, Thomas J. Nelson, Thomas P. Hanschen, Steven J. Keipert
  • Publication number: 20210380857
    Abstract: A plurality of supported abrasive particles wherein each supported abrasive particle respectively comprises an abrasive platelet member having a major surface and having at least one crushed support member securely bonded to and proximate the major surface. Abrasive articles containing the supported abrasive particles, and methods of making supported abrasive particles are also disclosed.
    Type: Application
    Filed: October 1, 2019
    Publication date: December 9, 2021
    Inventors: Yuyang LIU, Chainika JANGU, Negus B. ADEFRIS, Ernest L. THURBER, Bradford B. WRIGHT, Geoffrey I. WILSON, Junting LI, Amelia W. KOENIG, Steven J. KEIPERT
  • Publication number: 20210370473
    Abstract: A coated abrasive disc includes an abrasive layer disposed on a major surface of a disc backing. The abrasive layer comprises triangular abrasive platelets secured to a major surface of the disc backing by at least one binder material. The triangular abrasive platelets are outwardly disposed from the major surface at contiguous intersections of horizontal and vertical lines of a rectangular grid pattern, wherein the intersections of the rectangular grid pattern have an areal density defined by C/(LT) where C is a unitless coverage factor having a value between 0.1 and 0.4, L is the average major triangular abrasive platelet side length and T is the average triangular abrasive platelet thickness. At least 70 percent of the intersections have a triangular abrasive platelet disposed thereat.
    Type: Application
    Filed: November 16, 2018
    Publication date: December 2, 2021
    Inventors: Thomas P. Hanschen, Steven J. Keipert, Joseph B. Eckel, Aaron K. Nienaber, Brant A. Moegenburg, Eric M. Moore, Thomas J. Nelson
  • Publication number: 20210268627
    Abstract: The present disclosure provides an abrasive article (10). The abrasive article (10) has a direction of use, a y-axis and a z-axis orthogonal to the y-axis and the direction of use. The abrasive article (10) further includes a backing (12) and shaped abrasive particles attached to the backing. About 5% to about 100% of the shaped abrasive particles (14) independently include a first side surface (16), a second side surface (18) opposed to the first side surface (16), a leading surface (20) connected to the first side surface (16) at a first edge (24) and connected to the second side surface (18) at a second edge (26), a rake angle (30) between the backing (12) and the leading surface (20) in a range of from about 10 degrees to about 110 degrees, and a z-direction rotational angle (50) between a line (52) intersecting the first edge (16) and second edge (18) and the direction of use (22) of the abrasive article (10) in a range of from about 10 degrees to about 170 degrees.
    Type: Application
    Filed: April 17, 2019
    Publication date: September 2, 2021
    Inventors: Negus B. Adefris, Scott R. Culler, Joseph B. Eckel, John D. Haas, Thomas J. Nelson, Aaron K. Nienaber, Steven J. Keipert, Vincent Jusuf, Fay T. Salmon, Yuzhi Xia, Michael J. Wald
  • Patent number: 10919126
    Abstract: Methods of making an abrasive article. Abrasive particles are loaded to a distribution tool including a plurality of strips defining a plurality of channels. Each channel is open to a lower side of the tool. The loaded particles are distributed from the distribution tool to a major face of a backing web below the lower side. At least a majority of the particles distributed from the tool undergo an orientation sequence in which each particle first enters one of the channels. The particle then passes partially through the channel such that a first portion is beyond the lower side and in contact with the major face, and a second portion within the channel. The sequence then includes the particle remaining in simultaneous contact with one of the strips and the major face for a dwell period.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: February 16, 2021
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Geoffrey I. Wilson, Brian G. Koethe, Steven J. Keipert
  • Publication number: 20200398402
    Abstract: A coated abrasive disc includes a disc backing having an outer circumference. An abrasive layer is disposed on the disc backing. The abrasive layer comprises triangular abrasive platelets secured to a major surface of the disc backing by at least one binder material. The triangular abrasive platelets are disposed at least 70 percent of regularly-spaced points along an arithmetic spiral pattern extending outwardly toward the outer circumference. Each one of the triangular abrasive platelets has respective top and bottom surfaces connected to each other, and separated by, three sidewalls. On a respective basis, one sidewall of at least 90 percent of each of the triangular abrasive platelets disposed facing and proximate to the disc backing, and is lengthwise aligned within 10 degrees of being tangent to the arithmetic spiral pattern. Methods of making and using the coated abrasive disc are also disclosed.
    Type: Application
    Filed: November 16, 2018
    Publication date: December 24, 2020
    Inventors: Thomas P. Hanschen, Steven J. Keipert, Joseph B. Eckel, Aaron K. Nienaber, Erin D. Spring, Brant A. Moegenburg, Eric M. Moore, Thomas J. Nelson
  • Publication number: 20200391352
    Abstract: A coated abrasive disc includes a disc backing and an abrasive layer disposed thereon. The abrasive layer comprises abrasive elements secured to a major surface of the disc backing by at least one binder material. The abrasive elements are disposed at contiguous intersections of horizontal and vertical lines of a rectangular grid pattern. At least 70 percent of the intersections have one of the abrasive elements disposed thereat. Each of the abrasive elements has two triangular abrasive platelets. Each one of the triangular abrasive platelets has respective top and bottom surfaces connected to each other, and separated by, three sidewalls. On a respective basis, one sidewall of at least 90 percent of the triangular abrasive platelets is disposed facing and proximate to the disc backing. The abrasive elements are arranged such that the triangular abrasive platelets in orthogonally adjacent abrasive elements have a Z-axis rotational orientation within 10 degrees of perpendicular to each other.
    Type: Application
    Filed: November 16, 2018
    Publication date: December 17, 2020
    Inventors: Thomas P. Hanschen, Steven J. Keipert, Joseph B. Eckel, Aaron K. Nienaber, Brant A. Moegenburg, Eric M. Moore, Thomas J. Nelson
  • Publication number: 20200384610
    Abstract: A coated abrasive disc includes a disc backing and an abrasive layer disposed thereon. The abrasive layer comprises abrasive elements secured to a major surface of the disc backing by at least one binder material. The abrasive elements are disposed at contiguous intersections of horizontal and vertical lines of a rectangular grid pattern. Each abrasive element has two triangular abrasive platelets, each having respective top and bottom surfaces connected to each other, and separated by, three sidewalls. On a respective basis, one sidewall of the triangular abrasive platelets is disposed facing and proximate to the disc backing. A first portion of the abrasive elements is arranged in alternating first rows wherein the triangular abrasive platelets are disposed lengthwise aligned with the vertical lines. A second portion of the abrasive elements is arranged in alternating second rows wherein the triangular abrasive platelets are disposed lengthwise aligned with the horizontal lines.
    Type: Application
    Filed: November 16, 2018
    Publication date: December 10, 2020
    Inventors: Thomas P. Hanschen, Steven J. Keipert, Joseph B. Eckel, Aaron K. Nienaber, Erin D. Spring, Brant A. Moegenburg, Eric M. Moore, Thomas J. Nelson
  • Patent number: 10836015
    Abstract: A coated abrasive article includes a backing, a make layer, crushed abrasive particles, and a size layer. The crushed abrasive particles include: 35 to 100 weight percent of initial crushed abrasive particles having a first composition and first size grade, wherein a majority of the initial crushed abrasive particles are platey crushed abrasive particles, and wherein each platey crushed abrasive particle has a respective length, width, and thickness; and 0 to 65 weight percent of crushed filler particles having a second composition and a second size grade. The first and second compositions and/or size grades are different. The coated abrasive article has a direction of intended use, a majority of the platey crushed abrasive particles of the coated abrasive article are positioned with their thickness oriented substantially parallel to the direction of intended use. A method of making the coated abrasive article is also disclosed.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: November 17, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventor: Steven J. Keipert
  • Publication number: 20200346322
    Abstract: A coated abrasive disc includes a disc backing having an outer circumference. An abrasive layer is disposed on the disc backing. The abrasive layer comprises triangular abrasive platelets secured to a major surface of the disc backing by at least one binder material. The triangular abrasive platelets are outwardly disposed at regularly-spaced points along a spiral pattern extending outwardly toward the outer circumference. Each triangular abrasive platelet has respective top and bottom surfaces connected to each other, and separated by, three sidewalls. On a respective basis, one sidewall of at least 90 percent of the triangular abrasive platelets is disposed facing and proximate to the disc backing, and at least 70 percent of the triangular abrasive platelets are disposed in a recurring sequential orientation having an oscillating Z-axis rotational orientation of the first respective sidewall relative to the tangents to the spiral pattern at regularly-spaced points.
    Type: Application
    Filed: November 16, 2018
    Publication date: November 5, 2020
    Inventors: Thomas P. Hanschen, Steven J. Keipert, Joseph B. Eckel, Aaron K. Nienaber, Erin D. Spring, Brant A. Moegenburg, Eric M. Moore, Thomas J. Nelson
  • Publication number: 20200223031
    Abstract: An abrasive article includes a plurality of abrasive particles and the rotational orientation of at least a portion of the abrasive particles about the z-axis varies randomly within a defined range, and the spacing of the abrasive particles along the y-axis varies randomly.
    Type: Application
    Filed: March 27, 2020
    Publication date: July 16, 2020
    Inventors: Geoffrey I. Wilson, Brian G. Koethe, Steven J. Keipert
  • Patent number: 10675734
    Abstract: A coated abrasive article maker apparatus is disclosed comprising a first web path comprising a production tool and a second web path configured for a resin coated backing. The second web path is configured to guide the resin coated backing through the coated abrasive article maker apparatus with the resin layer positioned facing the dispensing surface. An abrasive particle feeder is positioned along the first web path and is configured to dispense abrasive particles onto the dispensing surface such that abrasive particles are removably disposed within cavities of the production tool. Abrasive particles are transferred from the plurality of cavities to the resin layer of the resin coated backing when the production tool is positioned adjacent the resin coated backing.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: June 9, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Scott R. Culler, John T. Boden, Steven J. Keipert, Negus B. Adefris, Karan Jindal, Aaron K. Nienaber, David L. Morrison, Peter T. Benson, Pratik Pranay, Bradford B. Wright
  • Patent number: 10675794
    Abstract: A polyurethane foam backing suitable for making a coated abrasive article is disclosed. The polyurethane foam backing has a textured surface bearing an array of raised features and land areas. The array's geometry is designed such that a 90 degree peel force to remove a production tooling having a contacting surface bearing a plurality of microreplicated mold cavities from the textured surface is accept able.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: June 9, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Joseph B. Eckel, Steven J. Keipert, Ehrich J. Braunschweig
  • Publication number: 20200139512
    Abstract: A coated abrasive article maker apparatus is disclosed comprising a first web path comprising a production tool and a second web path configured for a resin coated backing. The second web path is configured to guide the resin coated backing through the coated abrasive article maker apparatus with the resin layer positioned facing the dispensing surface. An abrasive particle feeder is positioned along the first web path and is configured to dispense abrasive particles onto the dispensing surface such that abrasive particles are removably disposed within cavities of the production tool. Abrasive particles are transferred from the plurality of cavities to the resin layer of the resin coated backing when the production tool is positioned adjacent the resin coated backing.
    Type: Application
    Filed: December 19, 2019
    Publication date: May 7, 2020
    Inventors: Scott R. Culler, John T. Boden, Steven J. Keipert, Negus B. Adefris, Karan Jindal, Aaron K. Nienaber, David L. Morrison, Peter T. Benson, Pratik Pranay, Bradford B. Wright
  • Patent number: 10611001
    Abstract: The method generally involves the steps of filling the cavities in a production tool each with an individual abrasive particle. Aligning a filled production tool and a resin coated backing for transfer of the abrasive particles to the resin coated backing. Transferring the abrasive particles from the cavities onto the resin coated backing and removing the production tool from the aligned position with the resin coated backing. Thereafter the resin layer is cured, a size coat is applied and cured and the coated abrasive article is converted to sheet, disk, or belt form by suitable converting equipment.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: April 7, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Scott R. Culler, John T. Boden, Steven J. Keipert, Negus B. Adefris
  • Patent number: 10603766
    Abstract: An abrasive article includes a plurality of abrasive particles and the rotational orientation of at least a portion of the abrasive particles about the z-axis varies randomly within a defined range, and the spacing of the abrasive particles along the y-axis varies randomly.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: March 31, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Geoffrey I. Wilson, Brian G. Koethe, Steven J. Keipert