Patents by Inventor Steven T. Mayer

Steven T. Mayer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9447505
    Abstract: Exposed copper regions on a semiconductor substrate can be etched by a wet etching solution comprising (i) one or more complexing agents selected from the group consisting of bidentate, tridentate, and quadridentate complexing agents; and (ii) an oxidizer, at a pH of between about 5 and 12. In many embodiments, the etching is substantially isotropic and occurs without visible formation of insoluble species on the surface of copper. The etching is useful in a number of processes in semiconductor fabrication, including for partial or complete removal of copper overburden, for planarization of copper surfaces, and for forming recesses in copper-filled damascene features. Examples of suitable etching solutions include solutions comprising a diamine (e.g., ethylenediamine) and/or a triamine (e.g., diethylenetriamine) as bidentate and tridentate complexing agents respectively and hydrogen peroxide as an oxidizer.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: September 20, 2016
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, Eric G. Webb, David W. Porter
  • Publication number: 20160258078
    Abstract: Prior to electrodeposition of copper onto a nickel-containing or a cobalt-containing seed layer, a semiconductor wafer is pretreated by contacting the seed layer with a pre-wetting liquid comprising cupric ions at a concentration of at least about 10 g/L, more preferably of at least about 30 g/L, and an electroplating suppressor, such as a compound from the class of polyalkylene glycols. This pre-treatment is particularly useful for wafers having one or more large recessed features, such as through silicon vias (TSVs). The pre-wetting liquid is preferably degassed prior to contact with the wafer substrate. The pretreatment is preferably performed under subatmospheric pressure to prevent bubble formation within the recessed features. After the wafer is pretreated, copper is electrodeposited from an electroplating solution (such as an acidic electroplating solution) to fill the recessed features on the wafer.
    Type: Application
    Filed: March 4, 2015
    Publication date: September 8, 2016
    Inventors: Matthew S. Thorum, Steven T. Mayer
  • Patent number: 9412713
    Abstract: A method of treating a copper containing structure on a substrate is disclosed. The method includes electrodepositing the copper containing structure on a substrate, annealing the copper containing structure, and forming an interface between a pad of the copper containing structure and a solder structure after anneal. The interface can have improved resistance to interfacial voiding. The copper containing structure is configured to deliver current between one or more ports and one or more solder structures in the integrated circuit package. Annealing the copper containing structure can move impurities and vacancies to the surface of the copper containing structure for subsequent removal.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: August 9, 2016
    Assignee: Novellus Systems, Inc.
    Inventors: Bryan L. Buckalew, Steven T Mayer, Thomas Ponnuswamy, David Porter
  • Patent number: 9404194
    Abstract: An apparatus for continuous simultaneous electroplating of two metals having substantially different standard electrodeposition potentials (e.g., for deposition of Sn—Ag alloys) comprises an anode chamber for containing an anolyte comprising ions of a first, less noble metal, (e.g., tin), but not of a second, more noble, metal (e.g., silver) and an active anode; a cathode chamber for containing catholyte including ions of a first metal (e.g., tin), ions of a second, more noble, metal (e.g., silver), and the substrate; a separation structure positioned between the anode chamber and the cathode chamber, where the separation structure substantially prevents transfer of more noble metal from catholyte to the anolyte; and fluidic features and an associated controller coupled to the apparatus and configured to perform continuous electroplating, while maintaining substantially constant concentrations of plating bath components for extended periods of use.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: August 2, 2016
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, David W. Porter
  • Publication number: 20160215408
    Abstract: An apparatus for electroplating metal on a substrate while controlling plating uniformity includes in one aspect: a plating chamber having anolyte and catholyte compartments separated by a membrane; a primary anode positioned in the anolyte compartment; an ionically resistive ionically permeable element positioned between the membrane and a substrate in the catholyte compartment; and a secondary electrode configured to donate and/or divert plating current to and/or from the substrate, wherein the secondary electrode is positioned such that the donated and/or diverted plating current does not cross the membrane separating the anolyte and catholyte compartments, but passes through the ionically resistive ionically permeable element. In some embodiments the secondary electrode is an azimuthally symmetrical anode (e.g., a ring positioned in a separate compartment around the periphery of the plating chamber) that can be dynamically controlled during electroplating.
    Type: Application
    Filed: January 22, 2015
    Publication date: July 28, 2016
    Applicant: LAM RESEARCH CORPORATION
    Inventors: Burhanuddin Kagajwala, Bryan L. Buckalew, Steven T. Mayer, Lee Peng Chua, Aaron Berke, James Isaac Fortner, Robert Rash
  • Patent number: 9394620
    Abstract: Described are apparatus and methods for electroplating one or more metals onto a substrate. Embodiments include electroplating apparatus configured for plating highly uniform metal layers. In specific embodiments, the apparatus includes a flow-shaping element made of an ionically resistive material and having a plurality of channels made through the flow shaping element. The channels allow for transport of the electrolyte through the flow shaping element during electroplating. The channel openings are arranged in a spiral-like pattern on the substrate-facing surface of the flow shaping element such that the center of the spiral-like pattern is offset from the center of the flow shaping element.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: July 19, 2016
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, David W. Porter, Edwin Goh, Bryan L. Buckalew, Robert Rash
  • Patent number: 9385035
    Abstract: In some method and apparatus disclosed herein, the profile of current delivered to the substrate provides a relatively uniform current density on the substrate surface during immersion. These methods include controlling the current density applied across a substrate's surface during immersion by dynamically controlling the current to account for the changing substrate surface area in contact with electrolyte during immersion. In some cases, current density pulses and/or steps are used during immersion, as well.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: July 5, 2016
    Assignee: Novellus Systems, Inc.
    Inventors: Tighe A. Spurlin, Jian Zhou, Edward C. Opocensky, Jonathan Reid, Steven T. Mayer
  • Publication number: 20160186356
    Abstract: Provided herein are methods and apparatus for determining leveler concentration in an electroplating solution. The approach allows the concentration of leveler to be detected and measured, even at very low leveler concentrations. According to the various embodiments, the methods involve providing an electrode with a metal surface, exposing the electrode to a pre-acceleration solution with at least one accelerator, allowing the surface of the electrode to become saturated with accelerator, measuring an electrochemical response while plating the electrode in a solution, and determining the concentration of leveler in the solution by comparing the measured electrochemical response to a model relating leveler concentration to known electrochemical responses. According to other embodiments, the apparatus includes an electrode, a measuring apparatus or an electrochemical cell configured to measure an electrochemical response, and a controller designed to carry out the method outlined above.
    Type: Application
    Filed: March 4, 2016
    Publication date: June 30, 2016
    Inventor: Steven T. Mayer
  • Patent number: 9359688
    Abstract: Disclosed are methods of electroplating a metal onto a substrate surface in an electroplating bath and adjusting the pH of the bath. The methods may include exposing the substrate surface, a counter-electrode, and an acid generating surface to the bath, biasing the substrate surface sufficiently negative relative to the counterelectrode such that metal ions from the bath are reduced and plated onto the substrate surface, and biasing the acid generating surface sufficiently positive relative to the counterelectrode such that free hydrogen ions are generated at the acid generating surface thereby decreasing the pH of the bath. Also disclosed are apparatuses for electroplating metal onto a substrate surface in an electroplating bath, and for adjusting the pH of the electroplating bath. The apparatuses may include an acid generating surface configured to generate free hydrogen ions in the bath upon supply of sufficient positive voltage bias relative to a counterelectrode electrical contact.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: June 7, 2016
    Assignee: Novellus Systems, Inc.
    Inventors: Lee Peng Chua, Thomas A. Ponnuswamy, Mark Rea, Steven T. Mayer
  • Publication number: 20160145761
    Abstract: Disclosed herein are cleaning discs for cleaning one or more elements of a semiconductor processing apparatus. In some embodiments, the disc may have a substantially circular upper surface, a substantially circular lower surface, a substantially circular edge joining the upper and lower surfaces, and a plurality of pores opening at the edge and having an interior extending into the interior of the disc. In some embodiments, the pores are dimensioned such that a cleaning agent may be retained in the interior of the pores by an adhesive force between the cleaning agent and the interior surface of the pores. Also disclosed herein are cleaning methods involving loading a cleaning agent into a plurality of pores of a cleaning disc, positioning the cleaning disc within a semiconductor processing apparatus, and releasing cleaning agent from the plurality of pores such that elements of the apparatus are contacted by the released cleaning agent.
    Type: Application
    Filed: November 23, 2015
    Publication date: May 26, 2016
    Inventors: Steven T. Mayer, Thomas A. Ponnuswamy, Lee Peng Chua, Robert Rash
  • Publication number: 20160115611
    Abstract: Methods of electroplating metal on a substrate while controlling azimuthal uniformity, include, in one aspect, providing the substrate to the electroplating apparatus configured for rotating the substrate during electroplating, and electroplating the metal on the substrate while rotating the substrate relative to a shield such that a selected portion of the substrate at a selected azimuthal position dwells in a shielded area for a different amount of time than a second portion of the substrate having the same average arc length and the same average radial position and residing at a different angular (azimuthal) position. For example, a semiconductor wafer substrate can be rotated during electroplating slower or faster, when the selected portion of the substrate passes through the shielded area.
    Type: Application
    Filed: January 4, 2016
    Publication date: April 28, 2016
    Inventors: Steven T. Mayer, David W. Porter, Bryan L. Buckalew, Robert Rash
  • Patent number: 9309605
    Abstract: Provided herein are methods and apparatus for determining leveler concentration in an electroplating solution. The approach allows the concentration of leveler to be detected and measured, even at very low leveler concentrations. According to the various embodiments, the methods involve providing an electrode with a metal surface, exposing the electrode to a pre-acceleration solution with at least one accelerator, allowing the surface of the electrode to become saturated with accelerator, measuring an electrochemical response while plating the electrode in a solution, and determining the concentration of leveler in the solution by comparing the measured electrochemical response to a model relating leveler concentration to known electrochemical responses. According to other embodiments, the apparatus includes an electrode, a measuring apparatus or an electrochemical cell configured to measure an electrochemical response, and a controller designed to carry out the method outlined above.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: April 12, 2016
    Assignee: Novellus Systems, Inc.
    Inventor: Steven T. Mayer
  • Patent number: 9260793
    Abstract: Methods of electroplating metal on a substrate while controlling azimuthal uniformity, include, in one aspect, providing the substrate to the electroplating apparatus configured for rotating the substrate during electroplating, and electroplating the metal on the substrate while rotating the substrate relative to a shield such that a selected portion of the substrate at a selected azimuthal position dwells in a shielded area for a different amount of time than a second portion of the substrate having the same average arc length and the same average radial position and residing at a different angular (azimuthal) position. For example, a semiconductor wafer substrate can be rotated during electroplating slower or faster, when the selected portion of the substrate passes through the shielded area.
    Type: Grant
    Filed: September 11, 2014
    Date of Patent: February 16, 2016
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, David W. Porter, Bryan L. Buckalew, Robert Rash
  • Patent number: 9221081
    Abstract: Disclosed herein are cleaning discs for cleaning one or more elements of a semiconductor processing apparatus. In some embodiments, the disc may have a substantially circular upper surface, a substantially circular lower surface, a substantially circular edge joining the upper and lower surfaces, and a plurality of pores opening at the edge and having an interior extending into the interior of the disc. In some embodiments, the pores are dimensioned such that a cleaning agent may be retained in the interior of the pores by an adhesive force between the cleaning agent and the interior surface of the pores. Also disclosed herein are cleaning methods involving loading a cleaning agent into a plurality of pores of a cleaning disc, positioning the cleaning disc within a semiconductor processing apparatus, and releasing cleaning agent from the plurality of pores such that elements of the apparatus are contacted by the released cleaning agent.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: December 29, 2015
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, Thomas A. Ponnuswamy, Lee Peng Chua, Robert Rash
  • Publication number: 20150315720
    Abstract: An electroplating apparatus for filling recessed features on a semiconductor substrate includes a vessel configured to maintain a concentrated electroplating solution at a temperature of at least about 40° C., wherein the solution would have formed a precipitate at 20° C. This vessel is in fluidic communication with an electroplating cell configured for bringing the concentrated electrolyte in contact with the semiconductor substrate at a temperature of at least about 40° C., or the vessel is the electroplating cell. In order to prevent precipitation of metal salts from the electrolyte, the apparatus further includes a controller having program instructions for adding a diluent to the concentrated electroplating solution in the vessel to avoid precipitation of a salt from the concentrated electroplating solution in response to a signal indicating that the electrolyte is at risk of precipitation.
    Type: Application
    Filed: July 15, 2015
    Publication date: November 5, 2015
    Inventors: Steven T. Mayer, Jonathan David Reid, Seshasayee Varadarajan
  • Publication number: 20150267306
    Abstract: Exposed copper regions on a semiconductor substrate can be etched by a wet etching solution comprising (i) one or more complexing agents selected from the group consisting of bidentate, tridentate, and quadridentate complexing agents; and (ii) an oxidizer, at a pH of between about 5 and 12. In many embodiments, the etching is substantially isotropic and occurs without visible formation of insoluble species on the surface of copper. The etching is useful in a number of processes in semiconductor fabrication, including for partial or complete removal of copper overburden, for planarization of copper surfaces, and for forming recesses in copper-filled damascene features. Examples of suitable etching solutions include solutions comprising a diamine (e.g., ethylenediamine) and/or a triamine (e.g., diethylenetriamine) as bidentate and tridentate complexing agents respectively and hydrogen peroxide as an oxidizer.
    Type: Application
    Filed: June 4, 2015
    Publication date: September 24, 2015
    Inventors: Steven T. Mayer, Eric G. Webb, David W. Porter
  • Patent number: 9139927
    Abstract: An electrolyte, and particularly anolyte, may be circulated via an open loop having a pressure regulator, so that the pressure in the plating chamber is maintained at a constant (or substantially constant) value with respect to atmospheric pressure. In these embodiments, a pressure regulator is in fluid communication with the anode chamber.
    Type: Grant
    Filed: November 7, 2013
    Date of Patent: September 22, 2015
    Assignee: Novellus Systems, Inc.
    Inventors: Robert Rash, Richard Abraham, David W. Porter, Steven T. Mayer
  • Patent number: 9109295
    Abstract: An electroplating apparatus for filling recessed features on a semiconductor substrate includes an electrolyte concentrator configured for concentrating an electrolyte having Cu2+ ions to form a concentrated electrolyte solution that would have been supersaturated at 20° C. The electrolyte is maintained at a temperature that is higher than 20° C., such as at least at about 40° C. The apparatus further includes a concentrated electrolyte reservoir and a plating cell, where the plating cell is configured for electroplating with concentrated electrolyte at a temperature of at least about 40° C. Electroplating with electrolytes having Cu2+ concentration of at least about 60 g/L at temperatures of at least about 40° C. results in very fast copper deposition rates, and is particularly well-suited for filling large, high aspect ratio features, such as through-silicon vias.
    Type: Grant
    Filed: October 12, 2009
    Date of Patent: August 18, 2015
    Assignee: Novellus Systems, Inc.
    Inventors: Jonathan D. Reid, Seshasayee Varadarajan, Steven T. Mayer
  • Publication number: 20150206770
    Abstract: Disclosed herein are methods and apparatuses for electroplating which employ seed layer detection. Such methods and related apparatuses may operate by selecting a wafer for processing, measuring from its surface one or more in-process color signals having one or more color components, calculating one or more metrics, each metric indicative of the difference between one of the in-process color signals and a corresponding set of reference color signals, determining whether an acceptable seed layer is present on the wafer surface based on whether a predetermined number of the one or more metrics are within an associated predetermined range which individually corresponds to that metric, and either electroplating the wafer when an acceptable seed layer is present or otherwise designating the wafer unacceptable for electroplating. The foregoing may then be repeated for one or more additional wafers to electroplate multiple wafers from a set of wafers.
    Type: Application
    Filed: January 21, 2014
    Publication date: July 23, 2015
    Inventors: Daniel Mark Dinneen, Steven T. Mayer
  • Patent number: 9074286
    Abstract: Exposed copper regions on a semiconductor substrate can be etched by a wet etching solution comprising (i) one or more complexing agents selected from the group consisting of bidentate, tridentate, and quadridentate complexing agents; and (ii) an oxidizer, at a pH of between about 5 and 12. In many embodiments, the etching is substantially isotropic and occurs without visible formation of insoluble species on the surface of copper. The etching is useful in a number of processes in semiconductor fabrication, including for partial or complete removal of copper overburden, for planarization of copper surfaces, and for forming recesses in copper-filled damascene features. Examples of suitable etching solutions include solutions comprising a diamine (e.g., ethylenediamine) and/or a triamine (e.g., diethylenetriamine) as bidentate and tridentate complexing agents respectively and hydrogen peroxide as an oxidizer.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: July 7, 2015
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, Eric Webb, David W. Porter