Patents by Inventor Steven T. Mayer

Steven T. Mayer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10364505
    Abstract: The embodiments herein relate to methods and apparatus for electroplating one or more materials onto a substrate. Typically, the embodiments herein utilize a channeled plate positioned near the substrate, creating a cross flow manifold between the channeled plate and substrate, and on the sides by a flow confinement ring. A seal may be provided between the bottom surface of a substrate holder and the top surface of an element below the substrate holder (e.g., the flow confinement ring). During plating, fluid enters the cross flow manifold through channels in the channeled plate, and through a cross flow inlet, then exits at the cross flow exit, positioned opposite the cross flow inlet. The apparatus may switch between a sealed state and an unsealed state during electroplating, for example by lowering and lifting the substrate and substrate holder as appropriate to engage and disengage the seal.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: July 30, 2019
    Assignee: Lam Research Corporation
    Inventors: Kari Thorkelsson, Aaron Berke, Bryan L. Buckalew, Steven T. Mayer
  • Patent number: 10309024
    Abstract: An apparatus for continuous simultaneous electroplating of two metals having substantially different standard electrodeposition potentials (e.g., for deposition of Sn—Ag alloys) comprises an anode chamber for containing an anolyte comprising ions of a first, less noble metal, (e.g., tin), but not of a second, more noble, metal (e.g., silver) and an active anode; a cathode chamber for containing catholyte including ions of a first metal (e.g., tin), ions of a second, more noble, metal (e.g., silver), and the substrate; a separation structure positioned between the anode chamber and the cathode chamber, where the separation structure substantially prevents transfer of more noble metal from catholyte to the anolyte; and fluidic features and an associated controller coupled to the apparatus and configured to perform continuous electroplating, while maintaining substantially constant concentrations of plating bath components for extended periods of use.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: June 4, 2019
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, David W. Porter
  • Patent number: 10301738
    Abstract: Disclosed are pre-wetting apparatus designs and methods. In some embodiments, a pre-wetting apparatus includes a degasser, a process chamber, and a controller. The process chamber includes a wafer holder configured to hold a wafer substrate, a vacuum port configured to allow formation of a subatmospheric pressure in the process chamber, and a fluid inlet coupled to the degasser and configured to deliver a degassed pre-wetting fluid onto the wafer substrate at a velocity of at least about 7 meters per second whereby particles on the wafer substrate are dislodged and at a flow rate whereby dislodged particles are removed from the wafer substrate. The controller includes program instructions for forming a wetting layer on the wafer substrate in the process chamber by contacting the wafer substrate with the degassed pre-wetting fluid admitted through the fluid inlet at a flow rate of at least about 0.4 liters per minute.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: May 28, 2019
    Assignee: Novellus Systems, Inc.
    Inventors: Bryan L. Buckalew, Steven T. Mayer, Thomas A. Ponnuswamy, Robert Rash, Brian Paul Blackman, Doug Higley
  • Publication number: 20190127873
    Abstract: Disclosed herein are methods for electroplating which employ seed layer detection. Such methods may operate by selecting a wafer, illuminating one or more points within an interior region of the wafer surface, measuring a first set of one or more in-process color signals from the one or more points within the interior region, illuminating one or more points within an edge region of the wafer surface, measuring a second set of one or more in-process color signals from the one or more points within the edge region, each color signal having one or more color components, calculating a metric indicative of a difference between the color signals in the first and second sets of in-process color signals, determining whether an acceptable seed layer is present on the wafer based on whether the metric is within a predetermined range, and repeating the foregoing for one or more additional wafers.
    Type: Application
    Filed: December 20, 2018
    Publication date: May 2, 2019
    Inventors: Daniel Mark Dinneen, Steven T. Mayer
  • Publication number: 20190122890
    Abstract: A method of electroplating a metal into features of a partially fabricated electronic device on a substrate is provided. The method includes (a) electroplating the metal into the features, to partially fill the features by a bottom up fill mechanism, while contacting the features with a first electroplating bath having a first composition and comprising ions of the metal; (b) thereafter, electroplating more of the metal into the features, to further fill the features, while contacting the features with a second electroplating bath having a second composition, which is different than the first composition, and comprises the ions of the metal; and (c) removing the substrate from an electroplating tool where operation (b) was performed.
    Type: Application
    Filed: October 19, 2018
    Publication date: April 25, 2019
    Inventors: Kari Thorkelsson, Nirmal Shankar, Sigamani, Bryan L. Buckalew, Steven T. Mayer, Thomas Anand Ponnuswamy
  • Publication number: 20190055665
    Abstract: Various embodiments described herein relate to methods and apparatus for electroplating material onto a semiconductor substrate. In some cases, one or more membrane may be provided in contact with an ionically resistive element to minimize the degree to which electrolyte passes backwards from a cross flow manifold, through the ionically resistive element, and into an ionically resistive element manifold during electroplating. The membrane may be designed to route electrolyte in a desired manner in some embodiments. In these or other cases, one or more baffles may be provided in the ionically resistive element manifold to reduce the degree to which electrolyte is able to bypass the cross flow manifold by flowing back through the ionically resistive element and across the electroplating cell within the ionically resistive element manifold. These techniques can be used to improve the uniformity of electroplating results.
    Type: Application
    Filed: August 10, 2018
    Publication date: February 21, 2019
    Inventors: Stephen J. Banik, II, Bryan L. Buckalew, Aaron Berke, James Isaac Fortner, Justin Oberst, Steven T. Mayer, Robert Rash
  • Patent number: 10208395
    Abstract: The embodiments disclosed herein relate to methods and apparatus for promoting bubble-free circulation of processing fluids in a recirculation system. Certain disclosed techniques involve passive, mechanical valve designs that promote variable resistance to flow in a drain. Other techniques involve automated flow control schemes that utilize feedback from flow meters, level sensors, etc. to achieve a balanced and bubble-free flow. The disclosed embodiments greatly reduce the incorporation of gas into a processing fluid, in particular as the processing fluid returns from a processing cell to a reservoir.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: February 19, 2019
    Assignee: Lam Research Corporation
    Inventors: Richard Abraham, Robert Rash, David W. Porter, Steven T. Mayer, John Ostrowski
  • Publication number: 20190040544
    Abstract: Disclosed are electroplating cups for holding, sealing, and providing electrical power to wafers during electroplating, where the electroplating cup can include a cup bottom, an elastomeric lipseal, and an electrical contact element. The cup bottom can include a radially inwardly protruding surface with a plurality of through-holes. The elastomeric lipseal can directly adhere to the radially inwardly protruding surface of the cup bottom, fill the plurality of through-holes, and encircle an inner edge of the cup bottom. In some implementations, this can mitigate the effects of wafer sticking. In some implementations, the cup bottom may be treated to promote adhesion between the elastomeric lipseal and the radially inwardly protruding surface of the cup bottom.
    Type: Application
    Filed: August 2, 2018
    Publication date: February 7, 2019
    Inventors: Aaron Berke, Robert Rash, Steven T. Mayer, Santosh Kumar, Lee Peng Chua
  • Patent number: 10196753
    Abstract: Disclosed herein are methods and apparatuses for electroplating which employ seed layer detection. Such methods and related apparatuses may operate by selecting a wafer for processing, measuring from its surface one or more in-process color signals having one or more color components, calculating one or more metrics, each metric indicative of the difference between one of the in-process color signals and a corresponding set of reference color signals, determining whether an acceptable seed layer is present on the wafer surface based on whether a predetermined number of the one or more metrics are within an associated predetermined range which individually corresponds to that metric, and either electroplating the wafer when an acceptable seed layer is present or otherwise designating the wafer unacceptable for electroplating. The foregoing may then be repeated for one or more additional wafers to electroplate multiple wafers from a set of wafers.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: February 5, 2019
    Assignee: Lam Research Corporation
    Inventors: Daniel Mark Dinneen, Steven T. Mayer
  • Publication number: 20190035640
    Abstract: In one implementation a wafer processing method includes filling a plurality of through-resist recessed features with a metal, such that a ratio of fill rate of a first feature to a fill rate of a second feature is R1; followed by electrochemically removing metal such that a ratio of metal removal rate from the first feature to the metal removal rate from the second feature is greater than R1, improving the uniformity of the fill. In some embodiments the method includes contacting an anodically biased substrate with an electrolyte such that the electrolyte has a transverse flow component in a direction that is substantially parallel to the working surface of the substrate. The method can be implemented in an apparatus that is configured for generating the transverse flow at the surface of the substrate. In some implementations the method makes use of distinct electrochemical regimes to achieve improvement in uniformity.
    Type: Application
    Filed: July 19, 2018
    Publication date: January 31, 2019
    Applicant: Lam Research Corporation
    Inventors: Kari Thorkelsson, Richard G. Abraham, Steven T. Mayer
  • Patent number: 10190232
    Abstract: Disclosed herein are electroplating systems for electroplating nickel onto a semiconductor substrate having an electroplating cell for holding an electrolyte solution during electroplating which includes a cathode chamber and an anode chamber configured to hold a nickel anode, and having an oxygen removal device arranged to reduce oxygen concentration in the electrolyte solution as it is flowed to the anode chamber during electroplating and during idle times when the system is not electroplating. Also disclosed herein are methods of electroplating nickel onto a substrate in an electroplating cell having anode and cathode chambers, which include reducing the oxygen concentration in an electrolyte solution, flowing the electrolyte solution into the anode chamber and contacting a nickel anode therein, and electroplating nickel from the electrolyte solution onto a substrate in the cathode chamber, wherein the electrolyte solution in the cathode chamber is maintained at a pH of between about 3.5 and 4.5.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: January 29, 2019
    Assignee: Lam Research Corporation
    Inventors: Bryan L. Buckalew, Thomas A. Ponnuswamy, Ben Foley, Steven T. Mayer
  • Patent number: 10190230
    Abstract: The embodiments herein relate to methods and apparatus for electroplating one or more materials onto a substrate. In many cases the material is a metal and the substrate is a semiconductor wafer, though the embodiments are no so limited. Typically, the embodiments herein utilize a channeled plate positioned near the substrate, creating a cross flow manifold defined on the bottom by the channeled plate, on the top by the substrate, and on the sides by a cross flow confinement ring. During plating, fluid enters the cross flow manifold both upward through the channels in the channeled plate, and laterally through a cross flow side inlet positioned on one side of the cross flow confinement ring. The flow paths combine in the cross flow manifold and exit at the cross flow exit, which is positioned opposite the cross flow inlet. These combined flow paths result in improved plating uniformity.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: January 29, 2019
    Assignee: Novellus Systems, Inc.
    Inventors: Richard Abraham, Steven T. Mayer, Bryan L. Buckalew, Robert Rash
  • Publication number: 20190010626
    Abstract: Methods of and apparatuses for monitoring electroplating bath quality in electroplating cells using voltage readings are described herein. Methods involve obtaining real-time voltage readings during an electroplating process and determining whether the voltage readings are within a threshold deviation of an expected voltage reading at a given time.
    Type: Application
    Filed: September 14, 2018
    Publication date: January 10, 2019
    Inventors: Matthew Sherman Thorum, Steven T. Mayer
  • Publication number: 20180371637
    Abstract: An apparatus for continuous simultaneous electroplating of two metals having substantially different standard electrodeposition potentials (e.g., for deposition of Sn—Ag alloys) comprises an anode chamber for containing an anolyte comprising ions of a first, less noble metal, (e.g., tin), but not of a second, more noble, metal (e.g., silver) and an active anode; a cathode chamber for containing catholyte including ions of a first metal (e.g., tin), ions of a second, more noble, metal (e.g., silver), and the substrate; a separation structure positioned between the anode chamber and the cathode chamber, where the separation structure substantially prevents transfer of more noble metal from catholyte to the anolyte; and fluidic features and an associated controller coupled to the apparatus and configured to perform continuous electroplating, while maintaining substantially constant concentrations of plating bath components for extended periods of use.
    Type: Application
    Filed: September 5, 2018
    Publication date: December 27, 2018
    Inventors: Lee Peng Chua, Steven T. Mayer, David W. Porter, Thomas A. Ponnuswamy
  • Patent number: 10128102
    Abstract: Disclosed are pre-wetting apparatus designs and methods for cleaning solid contaminants from substrates prior to through resist deposition of metal. In some embodiments, a pre-wetting apparatus includes a process chamber having a substrate holder, and at least one nozzle located directly above the wafer substrate and configured to deliver pre-wetting liquid (e.g., degassed deionized water) onto the substrate at a grazing angle of between about 5 and 45 degrees. In some embodiments the nozzle is a fan nozzle configured to deliver the liquid to the center of the substrate, such that the liquid first impacts the substrate in the vicinity of the center and then flows over the center of the substrate. In some embodiments the substrate is rotated unidirectionally or bidirectionally during pre-wetting with multiple accelerations and decelerations, which facilitate removal of contaminants.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: November 13, 2018
    Assignee: Novellus Systems, Inc.
    Inventors: Lee Peng Chua, Bryan L. Buckalew, Thomas Anand Ponnuswamy, Brian Paul Blackman, Chad Michael Hosack, Steven T. Mayer
  • Publication number: 20180312991
    Abstract: An apparatus for electroplating metal on a semiconductor substrate with improved azimuthal uniformity includes in one aspect: a plating chamber configured to contain an electrolyte and an anode; a substrate holder configured to hold the semiconductor substrate; an ionically resistive ionically permeable element (“the element”) configured to be positioned proximate the substrate; and a shield configured for providing azimuthally asymmetrical shielding and positioned between the substrate holder and the element such that the closest distance between the substrate-facing surface of the shield and the working surface of the substrate is less than 2 mm. In some embodiments there is an electrolyte-filled gap between the substrate-facing surface of the element and the shield during electroplating. The substrate-facing surface of the shield may be contoured such that the distance from different positions of the shield to the substrate is varied.
    Type: Application
    Filed: May 4, 2018
    Publication date: November 1, 2018
    Inventors: Gabriel Hay Graham, Lee Peng Chua, Steven T. Mayer, Robert Rash, Aaron Berke
  • Patent number: 10106907
    Abstract: An apparatus for continuous simultaneous electroplating of two metals having substantially different standard electrodeposition potentials (e.g., for deposition of Sn—Ag alloys) comprises an anode chamber for containing an anolyte comprising ions of a first, less noble metal, (e.g., tin), but not of a second, more noble, metal (e.g., silver) and an active anode; a cathode chamber for containing catholyte including ions of a first metal (e.g., tin), ions of a second, more noble, metal (e.g., silver), and the substrate; a separation structure positioned between the anode chamber and the cathode chamber, where the separation structure substantially prevents transfer of more noble metal from catholyte to the anolyte; and fluidic features and an associated controller coupled to the apparatus and configured to perform continuous electroplating, while maintaining substantially constant concentrations of plating bath components for extended periods of use.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: October 23, 2018
    Assignee: Novellus Systems, Inc.
    Inventors: Lee Peng Chua, Steven T. Mayer, David W. Porter, Thomas A. Ponnuswamy
  • Publication number: 20180291517
    Abstract: Methods of electroplating metal on a substrate while controlling azimuthal uniformity, include, in one aspect, providing the substrate to the electroplating apparatus configured for rotating the substrate during electroplating, and electroplating the metal on the substrate while rotating the substrate relative to a shield such that a selected portion of the substrate at a selected azimuthal position dwells in a shielded area for a different amount of time than a second portion of the substrate having the same average arc length and the same average radial position and residing at a different angular (azimuthal) position. The shield is positioned in close proximity of the substrate (e.g., within a distance that is equal to 0.1 of the substrate's radius). The shield in some embodiments may be an ionically resistive ionically permeable element having an azimuthally asymmetric distribution of channels.
    Type: Application
    Filed: June 13, 2018
    Publication date: October 11, 2018
    Inventors: Steven T. Mayer, David W. Porter, Bryan L. Buckalew, Robert Rash
  • Patent number: 10094038
    Abstract: Methods of and apparatuses for monitoring electroplating bath quality in electroplating cells using voltage readings are described herein. Methods involve obtaining real-time voltage readings during an electroplating process and determining whether the voltage readings are within a threshold deviation of an expected voltage reading at a given time.
    Type: Grant
    Filed: April 13, 2015
    Date of Patent: October 9, 2018
    Assignee: Lam Research Corporation
    Inventors: Matthew Sherman Thorum, Steven T. Mayer
  • Patent number: 10094034
    Abstract: The embodiments herein relate to methods and apparatus for electroplating one or more materials onto a substrate. In many cases the material is a metal and the substrate is a semiconductor wafer, though the embodiments are no so limited. Typically, the embodiments herein utilize a channeled plate positioned near the substrate, creating a cross flow manifold defined on the bottom by the channeled plate, on the top by the substrate, and on the sides by a cross flow confinement ring. Also typically present is an edge flow element configured to direct electrolyte into a corner formed between the substrate and substrate holder. During plating, fluid enters the cross flow manifold both upward through the channels in the channeled plate, and laterally through a cross flow side inlet positioned on one side of the cross flow confinement ring. The flow paths combine in the cross flow manifold and exit at the cross flow exit, which is positioned opposite the cross flow inlet.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: October 9, 2018
    Assignee: Lam Research Corporation
    Inventors: Gabriel Hay Graham, Bryan L. Buckalew, Steven T. Mayer, Robert Rash, James Isaac Fortner, Lee Peng Chua