Patents by Inventor Sushumna Iruvanti

Sushumna Iruvanti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8156998
    Abstract: The present invention is a patterned metal thermal interface. In one embodiment a system for dissipating heat from a heat-generating device includes a heat sink having a first surface adapted for thermal coupling to a first surface of the heat generating device and a thermal interface having at least one patterned surface, the thermal interface being adapted to thermally couple the first surface of the heat sink to the first surface of the heat generating device. The patterned surface of the thermal interface allows the thermal interface to deform under compression between the heat sink and the heat generating device, leading to better conformity of the thermal interface to the surfaces of the heat sink and the heat generating device.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: April 17, 2012
    Assignee: International Business Machines Corporation
    Inventors: Bruce K. Furman, Sushumna Iruvanti, Paul A. Lauro, Yves C. Martin, Da Yuan Shih, Theodore G. Van Kessel, Wei Zou
  • Publication number: 20120018873
    Abstract: A method and a package for circuit chip package having a bent structure. The circuit chip package includes: a substrate having a first coefficient of thermal expansion (CTE); a circuit chip, having a second CTE, mounted onto the substrate; a metal foil disposed on the circuit chip in thermal contact with the chip; a metal lid having (i) a third CTE that is different from the first CTE and (ii) a bottom edge region, where the metal lid is disposed on the metal foil in thermal contact with the metal foil; and an adhesive layer along the bottom edge of the metal lid, cured at a first temperature, bonding the lid to the substrate, producing an assembly which, at a second temperature, is transformed to a bent circuit chip package.
    Type: Application
    Filed: October 3, 2011
    Publication date: January 26, 2012
    Applicant: International Business Machines Corporation
    Inventors: Sushumna Iruvanti, Yves Martin, Theodore Van Kessel, Xiaojin Wei
  • Patent number: 8053284
    Abstract: A method of assembling a bent circuit chip package and a circuit chip package having a bent structure. The circuit chip package includes: a substrate having a first coefficient of thermal expansion (CTE); a circuit chip, having a second CTE, mounted onto the substrate; a metal foil disposed on the circuit chip in thermal contact with the chip; a metal lid having (i) a third CTE that is different from the first CTE and (ii) a bottom edge region, where the metal lid is disposed on the metal foil in thermal contact with the metal foil; and an adhesive layer along the bottom edge of the metal lid, cured at a first temperature, bonding the lid to the substrate, producing an assembly which, at a second temperature, is transformed to a bent circuit chip package.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: November 8, 2011
    Assignee: International Business Machines Corporation
    Inventors: Sushumna Iruvanti, Yves Martin, Theodore van Kessel, Xiaojin Wei
  • Patent number: 8021925
    Abstract: A semiconductor module structure and a method of forming the semiconductor module structure are disclosed. The structure incorporates a die mounted on a substrate and covered by a lid. A thermal compound is disposed within a thermal gap between the die and the lid. A barrier around the periphery of the die extends between the lid and the substrate, contains the thermal compound, and flexes in response to expansion and contraction of both the substrate and the lid during cycling of the semiconductor module. More particularly, either the barrier is formed of a flexible material or has a flexible connection to the substrate and/or to the lid. The barrier effectively contains the thermal compound between the die and the lid and, thereby, provides acceptable and controlled coverage of the thermal compound over the die for heat removal.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: September 20, 2011
    Assignee: International Business Machines Corporation
    Inventors: David L. Edwards, Sushumna Iruvanti, Hilton T. Toy, Wei Zou
  • Publication number: 20110180923
    Abstract: A frontside of a chip is bonded to a top surface of a chip carrier. Seal material is dispensed at a periphery of the top surface of the chip carrier. A solder TIM having a first side and a second side is provided. The first side of the TIM contacts a backside of the chip. A reflow is performed to melt the TIM. The second side of the TIM is bonded to a lid. The seal material is cured. The lid is attached to the top surface of the chip carrier. Backfill material is injected into a space between the top surface of the chip carrier and the lid. The backfill material abuts sides of the TIM. The backfill material is cured. TIM solder cracking and associated thermal degradation are mitigated.
    Type: Application
    Filed: January 26, 2010
    Publication date: July 28, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: JAMES N. HUMENIK, SUSHUMNA IRUVANTI, RICHARD LANGLOIS, HSICHANG LIU, GOVINDARAJAN NATARAJAN, KAMAL K. SIKKA, HILTON T. TOY, JIANTAO ZHENG, GREGG B. MONJEAU, MARK KAPFHAMMER
  • Patent number: 7981849
    Abstract: A reversible thermal thickening grease for microelectronic packages, in which the grease contains filler particles; at least one polymer; and a binder; in which the filler particles are dispersed within the binder, in which one or more segments of the at least one polymer may be attached to the filler particles prior to dispersion in the binder, and in which the polymer collapses at temperatures below a Theta temperature and swells at temperatures above a Theta temperature. During the operation of a microelectronic package, grease pump-out and air proliferation are minimized with use of the reversible thermal thickening grease, while grease fluidity is retained under repetitive thermal stresses.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: July 19, 2011
    Assignee: International Business Machines Corporation
    Inventors: Claudius Feger, Jeffrey D. Gelorme, Sushumna Iruvanti, Rajneesh Kumar, Ijeoma M. Nnebe
  • Patent number: 7964542
    Abstract: Liquid compositions containing a specific hindered phenol or a hindered phenol in combination with an aromatic phosphite are provided which are used as a thermal interface between a heatsink and a chip during a test procedure for electronic components which compositions enhance the thermal conductivity between the heatsink and the chip, are easily removed from the heatsink and the chip after the test procedure without any deleterious residue and which allow the use of high temperatures for extended periods during the test procedure without any significant degradation of the composition. A method for using the compositions in electronic component test procedures such as burn-in procedures is also provided.
    Type: Grant
    Filed: January 12, 2006
    Date of Patent: June 21, 2011
    Assignee: International Business Machines Corporation
    Inventors: Krishna G. Sachdev, Harbans Singh Sachdev, legal representative, Mark S. Chace, Normand Cote, David L. Gardell, Jeffrey D. Gelorme, Sushumna Iruvanti, G. John Lawson, Tuknekah M. Noble
  • Publication number: 20110037167
    Abstract: A method of assembling a bent circuit chip package and a circuit chip package having a bent structure. The circuit chip package includes: a substrate having a first coefficient of thermal expansion (CTE); a circuit chip, having a second CTE, mounted onto the substrate; a metal foil disposed on the circuit chip in thermal contact with the chip; a metal lid having (i) a third CTE that is different from the first CTE and (ii) a bottom edge region, where the metal lid is disposed on the metal foil in thermal contact with the metal foil; and an adhesive layer along the bottom edge of the metal lid, cured at a first temperature, bonding the lid to the substrate, producing an assembly which, at a second temperature, is transformed to a bent circuit chip package.
    Type: Application
    Filed: August 13, 2009
    Publication date: February 17, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Sushumna Iruvanti, Yves Martin, Theodore van Kessel, Xiaojin Wei
  • Patent number: 7816785
    Abstract: An improved thermal interface material for semiconductor devices is provided. More particularly, low compressive force, non-silicone, high thermal conductivity formulations for thermal interface material is provided. The thermal interface material comprises a composition of non-silicone organics exhibiting thermal conductivity of approximately 5.5 W/mK or greater and a compressed bond-line thickness of approximately 100 microns or less using a compressive force of approximately 100 psi or less.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: October 19, 2010
    Assignee: International Business Machines Corporation
    Inventors: Sushumna Iruvanti, Randall G. Kemink, Rajneesh Kumar, Steven P. Ostrander, Prabjit Singh
  • Publication number: 20100181663
    Abstract: An improved thermal interface material for semiconductor devices is provided. More particularly, low compressive force, non-silicone, high thermal conductivity formulations for thermal interface material is provided. The thermal interface material comprises a composition of non-silicone organics exhibiting thermal conductivity of approximately 5.5 W/mK or greater and a compressed bond-line thickness of approximately 100 microns or less using a compressive force of approximately 100 psi or less.
    Type: Application
    Filed: January 22, 2009
    Publication date: July 22, 2010
    Applicant: International Business Machines Corporation
    Inventors: SUSHUMNA IRUVANTI, RANDALL G. KEMINK, RAJNEESH KUMAR, STEVEN P. OSTRANDER, PRABJIT SINGH
  • Publication number: 20100147497
    Abstract: The present invention is a patterned metal thermal interface. In one embodiment a system for dissipating heat from a heat-generating device includes a heat sink having a first surface adapted for thermal coupling to a first surface of the heat generating device and a thermal interface having at least one patterned surface, the thermal interface being adapted to thermally couple the first surface of the heat sink to the first surface of the heat generating device. The patterned surface of the thermal interface allows the thermal interface to deform under compression between the heat sink and the heat generating device, leading to better conformity of the thermal interface to the surfaces of the heat sink and the heat generating device.
    Type: Application
    Filed: February 23, 2010
    Publication date: June 17, 2010
    Inventors: BRUCE K. FURMAN, Sushumna Iruvanti, Paul A. Lauro, Yves C. Martin, Da Yuan Shih, Theodore G. Van Kessel, Wei Zou
  • Patent number: 7709951
    Abstract: Methods, apparatus and assemblies for enhancing heat transfer in electronic components using a flexible thermal pillow. The flexible thermal pillow has a thermally conductive material sealed between top and bottom conductive layers, with the bottom layer having a flexible reservoir residing on opposing sides of a central portion of the pillow that has a gap. The pillow may have roughened internal surfaces to increase an internal surface area within the pillow for enhanced heat dissipation. In an electronic assembly, the central portion of the pillow resides between a heat sink and heat-generating component for the thermal coupling there-between. During thermal cycling, the flexible reservoir of the pillow expands to retain thermally conductive material extruded from the gap, and then contracts to force such extruded material back into the gap. An external pressure source may contact the pillow for further forcing the extruded thermally conductive material back into the gap.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: May 4, 2010
    Assignee: International Business Machines Corporation
    Inventors: William L. Brodsky, Peter J. Brofman, James A. Busby, Bruce J. Chamberlin, Scott A. Cummings, David L. Edwards, Thomas J. Fleischman, Michael J. Griffin, IV, Sushumna Iruvanti, David C. Long, Jennifer V. Muncy, Robin A. Susko
  • Patent number: 7694719
    Abstract: The present invention is a patterned metal thermal interface. In one embodiment a system for dissipating heat from a heat-generating device includes a heat sink having a first surface adapted for thermal coupling to a first surface of the heat generating device and a thermal interface having at least one patterned surface, the thermal interface being adapted to thermally couple the first surface of the heat sink to the first surface of the heat generating device. The patterned surface of the thermal interface allows the thermal interface to deform under compression between the heat sink and the heat generating device, leading to better conformity of the thermal interface to the surfaces of the heat sink and the heat generating device.
    Type: Grant
    Filed: January 4, 2007
    Date of Patent: April 13, 2010
    Assignee: International Business Machines Corporation
    Inventors: Bruce K. Furman, Sushumna Iruvanti, Paul A. Lauro, Yves C. Martin, Da Yuan Shih, Theodore G. Van Kessel, Wei Zou
  • Patent number: 7615850
    Abstract: A method and device comprising an easily reworkable alpha particle barrier is provided. The easily reworkable alpha particle barrier is applied in the space between the surface of the chip and the surface of the substrate, and reduces soft error rate (SER). Further, the easily reworkable alpha particle barrier material is chosen from the group of an organic material, a hydrocarbon, more specifically a polyalphaolefin (PAO) oil, and a polymer or filled polymer; wherein the polyalphaolefin oil has a viscosity below 1000 cSt (at 100° C.). The easily reworkable alpha particle barrier material can be used with multichip modules (MCM's) allowing easy device rework of one or more dies without affecting other dies on the same substrate.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: November 10, 2009
    Assignee: International Business Machines Corporation
    Inventors: Rehan Choudhary, Benjamin V. Fasano, Sushumna Iruvanti, Daniel D. Reinhardt, Deborah A. Sylvester
  • Publication number: 20090109628
    Abstract: Integrated circuit chip cooling methods and systems are disclosed. A method for cooling an integrated circuit chip may comprise: providing a cooling mechanism; positioning an interface medium between the cooling mechanism and the integrated circuit chip; and interfacing the cooling mechanism and the integrated circuit chip through the interface medium; wherein at least one of the cooling mechanism, the integrated circuit chip, or the interface medium includes a convex portion on an interface surface thereof.
    Type: Application
    Filed: October 30, 2007
    Publication date: April 30, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Raschid J. Bezama, James N. Humenik, Sushumna Iruvanti, Govindarajan Natarajan
  • Publication number: 20080299707
    Abstract: A semiconductor module structure and a method of forming the semiconductor module structure are disclosed. The structure incorporates a die mounted on a substrate and covered by a lid. A thermal compound is disposed within a thermal gap between the die and the lid. A barrier around the periphery of the die extends between the lid and the substrate, contains the thermal compound, and flexes in response to expansion and contraction of both the substrate and the lid during cycling of the semiconductor module. More particularly, either the barrier is formed of a flexible material or has a flexible connection to the substrate and/or to the lid. The barrier effectively contains the thermal compound between the die and the lid and, thereby, provides acceptable and controlled coverage of the thermal compound over the die for heat removal.
    Type: Application
    Filed: December 13, 2007
    Publication date: December 4, 2008
    Applicant: International Business Machines Corporation
    Inventors: David L. Edwards, Sushumna Iruvanti, Hilton T. Toy, Wei Zou
  • Publication number: 20080225484
    Abstract: Methods, apparatus and assemblies for enhancing heat transfer in electronic components using a flexible thermal pillow. The flexible thermal pillow has a thermally conductive material sealed between top and bottom conductive layers, with the bottom layer having a flexible reservoir residing on opposing sides of a central portion of the pillow that has a gap. The pillow may have roughened internal surfaces to increase an internal surface area within the pillow for enhanced heat dissipation. In an electronic assembly, the central portion of the pillow resides between a heat sink and heat-generating component for the thermal coupling there-between. During thermal cycling, the flexible reservoir of the pillow expands to retain thermally conductive material extruded from the gap, and then contracts to force such extruded material back into the gap. An external pressure source may contact the pillow for further forcing the extruded thermally conductive material back into the gap.
    Type: Application
    Filed: March 16, 2007
    Publication date: September 18, 2008
    Applicant: International Business Machines Corporation
    Inventors: William L. Brodsky, Peter J. Brofman, James A. Busby, Bruce J. Chamberlin, Scott A. Cummings, David L. Edwards, Thomas J. Fleischman, Michael J. Griffin, Sushumna Iruvanti, David C. Long, Jennifer V. Muncy, Robin A. Susko
  • Publication number: 20080220998
    Abstract: A reversible thermal thickening grease for microelectronic packages, in which the grease contains filler particles; at least one polymer; and a binder; in which the filler particles are dispersed within the binder, in which one or more segments of the at least one polymer may be attached to the filler particles prior to dispersion in the binder, and in which the polymer collapses at temperatures below a Theta temperature and swells at temperatures above a Theta temperature. During the operation of a microelectronic package, grease pump-out and air proliferation are minimized with use of the reversible thermal thickening grease, while grease fluidity is retained under repetitive thermal stresses.
    Type: Application
    Filed: March 8, 2007
    Publication date: September 11, 2008
    Applicant: IBM CORPORATION (YORKTOWN)
    Inventors: Claudius Feger, Jeffrey D. Gelorme, Sushumna Iruvanti, Rajneesh Kumar, Ijeoma M. Nnebe
  • Publication number: 20080217793
    Abstract: A method and device comprising an easily reworkable alpha particle barrier is provided. The easily reworkable alpha particle barrier is applied in the space between the surface of the chip and the surface of the substrate, and reduces soft error rate (SER). Further, the easily reworkable alpha particle barrier material is chosen from the group of an organic material, a hydrocarbon, more specifically a polyalphaolefin (PAO) oil, and a polymer or filled polymer; wherein the polyalphaolefin oil has a viscosity below 1000 cSt (at 100° C.). The easily reworkable alpha particle barrier material can be used with multichip modules (MCM's) allowing easy device rework of one or more dies without affecting other dies on the same substrate.
    Type: Application
    Filed: April 16, 2008
    Publication date: September 11, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Rehan CHOUDHARY, Benjamin V. Fasano, Sushumna Iruvanti, Daniel D. Reinhardt, Deborah A. Sylvester
  • Publication number: 20080165502
    Abstract: The present invention is a patterned metal thermal interface. In one embodiment a system for dissipating heat from a heat-generating device includes a heat sink having a first surface adapted for thermal coupling to a first surface of the heat generating device and a thermal interface having at least one patterned surface, the thermal interface being adapted to thermally couple the first surface of the heat sink to the first surface of the heat generating device. The patterned surface of the thermal interface allows the thermal interface to deform under compression between the heat sink and the heat generating device, leading to better conformity of the thermal interface to the surfaces of the heat sink and the heat generating device.
    Type: Application
    Filed: January 4, 2007
    Publication date: July 10, 2008
    Inventors: Bruce K. Furman, Sushumna Iruvanti, Paul A. Lauro, Yves C. Martin, Da Yuan Shih, Theodore G. Van Kessel, Wei Zou