Patents by Inventor Tak Sing Wong

Tak Sing Wong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200246753
    Abstract: A free standing liquid membrane is disclosed that can selectively separate objects based on the kinetic energy value of the objects such that either an object having a first kinetic energy value can pass through the free standing liquid membrane while retaining the membrane and/or an object having a second kinetic energy value is prevented from passing through the membrane while retaining the membrane. Advantageously, the free standing liquid membrane can remain intact for seconds to hours with multiple objects passing through the membrane.
    Type: Application
    Filed: April 16, 2020
    Publication date: August 6, 2020
    Inventors: Tak-Sing Wong, Birgitt Boschitsch
  • Patent number: 10730789
    Abstract: A substrate with a switchable surface has been developed that can rapidly switch its surface character such as between two distinct liquid-repellent modes: (1) a superhydrophobic mode and (2) a slippery mode. Such surfaces have demonstrated adaptive liquid repellency and water harvesting capabilities.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: August 4, 2020
    Assignee: The Penn State Research Foundation
    Inventors: Tak-Sing Wong, Yu Huang, Birgitt Boschitsch, Nan Sun
  • Patent number: 10668431
    Abstract: A free standing liquid membrane is disclosed that can selectively separate objects based on the kinetic energy value of the objects such that either an object having a first kinetic energy value can pass through the free standing liquid membrane while retaining the membrane and/or an object having a second kinetic energy value is prevented from passing through the membrane while retaining the membrane. Advantageously, the free standing liquid membrane can remain intact for seconds to hours with multiple objects passing through the membrane.
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: June 2, 2020
    Assignee: The Penn State Research Foundation
    Inventors: Tak-Sing Wong, Birgitt Boschitsch
  • Publication number: 20200147552
    Abstract: A free standing liquid membrane is disclosed that can selectively separate objects based on the kinetic energy value of the objects such that either an object having a first kinetic energy value can pass through the free standing liquid membrane while retaining the membrane and/or an object having a second kinetic energy value is prevented from passing through the membrane while retaining the membrane. Advantageously, the free standing liquid membrane can remain intact for seconds to hours with multiple objects passing through the membrane.
    Type: Application
    Filed: April 26, 2018
    Publication date: May 14, 2020
    Inventors: Tak-Sing Wong, Birgitt Boschitsch
  • Patent number: 10550272
    Abstract: A self-healing, scratch resistant slippery surface that is manufactured by wicking a chemically-inert, high-density liquid coating over a roughened solid surface featuring micro and nanoscale topographies is described. Such a slippery surface shows anti-wetting properties, as well as exhibits significant reduction of adhesion of a broad range of biological materials, including particles in suspension or solution. Specifically, the slippery surfaces can be applied to medical devices and equipment to effectively repel biological materials such as blood, and prevent, reduce, or delay coagulation and surface-mediated clot formation. Moreover, the slippery surfaces can be used to prevent fouling by microorganisms such as bacteria.
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: February 4, 2020
    Assignee: President and Fellows of Harvard College
    Inventors: Joanna Aizenberg, Benjamin Hatton, Donald Ingber, Michael Super, Tak Sing Wong
  • Publication number: 20190381534
    Abstract: Substrates having a textured surface that can maintain or improve droplet mobility in both the Cassie and Wenzel states include a textured surface and a conformal lubricant layer thereover. The textured surface can include a plurality of raised first elements and a plurality of second elements thereon and the conformal lubricant layer over the plurality of raised first elements and covering the plurality of second elements. The plurality of raised first elements can have an average height of between 0.5 ?m and 500 ?m, and the plurality of second elements can have an average height of between 0.01 ?m and 10 ?m. Such substrates can be prepared by texturing a surface of a substrate with a plurality of raised first elements and a plurality of second elements thereon; optionally silanizing the textured surface and applying a lubricant layer over the plurality of raised first elements and between the plurality of second elements.
    Type: Application
    Filed: August 27, 2019
    Publication date: December 19, 2019
    Inventors: Xianming DAI, Birgitt M. BOSCHITSCH, Jing WANG, Tak-Sing WONG, Nan SUN
  • Patent number: 10450467
    Abstract: The present disclosure describes a strategy to create self-healing, slippery liquid-infused porous surfaces. Roughened (e.g., porous) surfaces can be utilized to lock in place a lubricating fluid, referred to herein as Liquid B to repel a wide range of materials, referred to herein as Object A (Solid A or Liquid A). Slippery liquid-infused porous surfaces outperforms other conventional surfaces in its capability to repel various simple and complex liquids (water, hydrocarbons, crude oil and blood), maintain low-contact-angle hysteresis (<2.5°), quickly restore liquid-repellency after physical damage (within 0.1-1 s), resist ice, microorganisms and insects adhesion, and function at high pressures (up to at least 690 atm). Some exemplary application where slippery liquid-infused porous surfaces will be useful include energy-efficient fluid handling and transportation, optical sensing, medicine, and as self-cleaning, and anti-fouling materials operating in extreme environments.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: October 22, 2019
    Assignee: President and Fellows of Harvard College
    Inventors: Joanna Aizenberg, Michael Aizenberg, Sung Hoon Kang, Philseok Kim, Tak Sing Wong
  • Patent number: 10434542
    Abstract: Substrates having a textured surface that can maintain or improve droplet mobility in both the Cassie and Wenzel states include a textured surface and a conformal lubricant layer thereover. The textured surface can include a plurality of raised first elements and a plurality of second elements thereon and the conformal lubricant layer over the plurality of raised first elements and covering the plurality of second elements. The plurality of raised first elements can have an average height of between 0.5 ?m and 500 ?m, and the plurality of second elements can have an average height of between 0.01 ?m and 10 ?m. Such substrates can be prepared by texturing a surface of a substrate with a plurality of raised first elements and a plurality of second elements thereon; optionally silanizing the textured surface and applying a lubricant layer over the plurality of raised first elements and between the plurality of second elements.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: October 8, 2019
    Assignee: THE PENN STATE RESEARCH FOUNDATION
    Inventors: Xianming Dai, Birgitt M. Boschitsch, Jing Wang, Tak-Sing Wong, Nan Sun
  • Patent number: 10329510
    Abstract: A robust and self-healing coating has been developed by incorporating a thermally self-healing chemical coating on smooth and/or roughened solid. When the chemically coated solid is combined with a lubricating fluid, the material system is capable to repel a broad range of liquids and solids. The thermally self-healing chemical coating may be applied on various industrial metals, glass and plastics, and has shown exceptionally physical and chemical robustness as compared to state-of-the-art liquid-repellent coatings.
    Type: Grant
    Filed: April 10, 2015
    Date of Patent: June 25, 2019
    Assignee: THE PENN STATE RESEARCH FOUNDATION
    Inventors: Jing Wang, Tak-Sing Wong
  • Publication number: 20190126268
    Abstract: A biochemical analysis system capable of sample preparation and processing can include at least one inlet channel having a non-fouling, slippery surface to autonomously transport a fluid sample to a chamber by a geometry of the at least one inlet channel. The at least one inlet channel can include a first end, which is open and exposed, and a second end connected to the chamber for mixing and reaction of the fluid sample, and the at least one inlet channel can include a converging or diverging angle.
    Type: Application
    Filed: October 29, 2018
    Publication date: May 2, 2019
    Inventors: Pak Kin Kin WONG, Tak-Sing WONG, Jing WANG, Hui LI, Yi LU, Ying WAN
  • Patent number: 10233334
    Abstract: The present disclosure describes a strategy to create self-healing, slippery liquid-infused porous surfaces. Roughened (e.g., porous) surfaces can be utilized to lock in place a lubricating fluid, referred to herein as Liquid B to repel a wide range of materials, referred to herein as Object A (Solid A or Liquid A). Slippery liquid-infused porous surfaces outperforms other conventional surfaces in its capability to repel various simple and complex liquids (water, hydrocarbons, crude oil and blood), maintain low-contact-angle hysteresis (<2.5°), quickly restore liquid-repellency after physical damage (within 0.1-1 s), resist ice, microorganisms and insects adhesion, and function at high pressures (up to at least 690 atm). Some exemplary application where slippery liquid-infused porous surfaces will be useful include energy-efficient fluid handling and transportation, optical sensing, medicine, and as self-cleaning, and anti-fouling materials operating in extreme environments.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: March 19, 2019
    Assignee: President and Fellows of Harvard College
    Inventors: Joanna Aizenberg, Michael Aizenberg, Sung Hoon Kang, Philseok Kim, Tak Sing Wong
  • Publication number: 20190016903
    Abstract: A coated smooth surface of a substrate repels liquids and viscoelastic materials and can have anti-staining and anti-biofouling properties. The smooth surface can be coated by applying a chemical layer on the surface and a lubricant. Such coated surfaces are useful for use in toilets, urinals, or other devices for the processing of liquids and viscoelastic materials such as solid or semi-solid metabolic waste of human digestive system. Such coated surfaces can also be applied to windows for buildings or vehicles such as automobiles or camera lenses to repel liquids (e.g., rain), ice, frost, insect residues, and birds' feces.
    Type: Application
    Filed: August 27, 2018
    Publication date: January 17, 2019
    Inventors: Tak-Sing WONG, Jing WANG
  • Publication number: 20180327608
    Abstract: The present disclosure describes a strategy to create self-healing, slippery self-lubricating polymers. Lubricating liquids with affinities to polymers can be utilized to get absorbed within the polymer and form a lubricant layer (of the lubricating liquid) on the polymer. The lubricant layer can repel a wide range of materials, including simple and complex fluids (water, hydrocarbons, crude oil and bodily fluids), restore liquid-repellency after physical damage, and resist ice, microorganisms and insects adhesion. Some exemplary applications where self-lubricating polymers will be useful include energy-efficient, friction-reduction fluid handling and transportation, medical devices, anti-icing, optical sensing, and as self-cleaning, and anti-fouling materials operating in extreme environments.
    Type: Application
    Filed: May 7, 2018
    Publication date: November 15, 2018
    Inventors: Joanna AIZENBERG, Michael AIZENBERG, Jiaxi CUI, Stuart DUNN, Benjamin HATTON, Caitlin HOWELL, Philseok KIM, Tak Sing WONG, Xi YAO
  • Publication number: 20180298203
    Abstract: A self-healing, scratch resistant slippery surface that is manufactured by wicking a chemically-inert, high-density liquid coating over a roughened solid surface featuring micro and nanoscale topographies is described. Such a slippery surface shows anti-wetting properties, as well as exhibits significant reduction of adhesion of a broad range of biological materials, including particles in suspension or solution. Specifically, the slippery surfaces can be applied to medical devices and equipment to effectively repel biological materials such as blood, and prevent, reduce, or delay coagulation and surface-mediated clot formation. Moreover, the slippery surfaces can be used to prevent fouling by microorganisms such as bacteria.
    Type: Application
    Filed: April 3, 2018
    Publication date: October 18, 2018
    Inventors: Joanna AIZENBERG, Benjamin HATTON, Donald INGBER, Michael SUPER, Tak Sing WONG
  • Publication number: 20180292579
    Abstract: Synthetic brochosomes can be prepared by disposing a monolayer of first polymer microspheres on a substrate and forming a layer of metal on the monolayer of the first polymer microspheres. A monolayer of second polymer microspheres is then disposed on the layer of metal to form a template. The second polymer microspheres are smaller than the first polymer microspheres. A brochosome material is then electrodeposited on the template. The brochosome material is selected from the group consisting of a metal, a metal oxide, a polymer or a hybrid thereof. The first polymer microspheres and the second polymer microspheres are then removed to form a coating of synthetic brochosomes of the brochosome material on the substrate.
    Type: Application
    Filed: April 5, 2018
    Publication date: October 11, 2018
    Inventors: Tak-Sing WONG, Shikuan YANG, Nan SUN, Birgitt BOSCHITSCH
  • Publication number: 20180187022
    Abstract: The present disclosure describes a strategy to create self-healing, slippery liquid-infused porous surfaces. Roughened (e.g., porous) surfaces can be utilized to lock in place a lubricating fluid, referred to herein as Liquid B to repel a wide range of materials, referred to herein as Object A (Solid A or Liquid A). Slippery liquid-infused porous surfaces outperforms other conventional surfaces in its capability to repel various simple and complex liquids (water, hydrocarbons, crude oil and blood), maintain low-contact-angle hysteresis (<2.5°), quickly restore liquid-repellency after physical damage (within 0.1-1 s), resist ice, microorganisms and insects adhesion, and function at high pressures (up to at least 690 atm). Some exemplary application where slippery liquid-infused porous surfaces will be useful include energy-efficient fluid handling and transportation, optical sensing, medicine, and as self-cleaning, and anti-fouling materials operating in extreme environments.
    Type: Application
    Filed: January 25, 2018
    Publication date: July 5, 2018
    Inventors: Joanna AIZENBERG, Michael AIZENBERG, Sung Hoon KANG, Philseok KIM, Tak Sing WONG
  • Publication number: 20180155239
    Abstract: A substrate with a switchable surface has been developed that can rapidly switch its surface character such as between two distinct liquid-repellent modes: (1) a superhydrophobic mode and (2) a slippery mode. Such surfaces have demonstrated adaptive liquid repellency and water harvesting capabilities.
    Type: Application
    Filed: December 5, 2017
    Publication date: June 7, 2018
    Inventors: Tak-Sing WONG, Yu Huang, Birgitt Boschitsch, Nan Sun
  • Publication number: 20180147604
    Abstract: Substrates having a textured surface that can maintain or improve droplet mobility in both the Cassie and Wenzel states include a textured surface and a conformal lubricant layer thereover. The textured surface can include a plurality of raised first elements and a plurality of second elements thereon and the conformal lubricant layer over the plurality of raised first elements and covering the plurality of second elements. The plurality of raised first elements can have an average height of between 0.5 ?m and 500 ?m, and the plurality of second elements can have an average height of between 0.01 ?m and 10 ?m. Such substrates can be prepared by texturing a surface of a substrate with a plurality of raised first elements and a plurality of second elements thereon; optionally silanizing the textured surface and applying a lubricant layer over the plurality of raised first elements and between the plurality of second elements.
    Type: Application
    Filed: April 22, 2016
    Publication date: May 31, 2018
    Inventors: Xianming DAI, Birgitt M. BOSCHITSCH, Jing WANG, Tak-Sing WONG, Nan SUN
  • Publication number: 20180127594
    Abstract: The present disclosure describes a strategy to create self-healing, slippery liquid-infused porous surfaces. Roughened (e.g., porous) surfaces can be utilized to lock in place a lubricating fluid, referred to herein as Liquid B to repel a wide range of materials, referred to herein as Object A (Solid A or Liquid A). Slippery liquid-infused porous surfaces outperforms other conventional surfaces in its capability to repel various simple and complex liquids (water, hydrocarbons, crude oil and blood), maintain low-contact-angle hysteresis (<2.5°), quickly restore liquid-repellency after physical damage (within 0.1-1 s), resist ice, microorganisms and insects adhesion, and function at high pressures (up to at least 690 atm). Some exemplary application where slippery liquid-infused porous surfaces will be useful include energy-efficient fluid handling and transportation, optical sensing, medicine, and as self-cleaning, and anti-fouling materials operating in extreme environments.
    Type: Application
    Filed: November 6, 2017
    Publication date: May 10, 2018
    Inventors: Joanna AIZENBERG, Michael AIZENBERG, Sung Hoon KANG, Philseok KIM, Tak Sing WONG
  • Patent number: 9963597
    Abstract: The present disclosure describes a strategy to create self-healing, slippery self-lubricating polymers. Lubricating liquids with affinities to polymers can be utilized to get absorbed within the polymer and form a lubricant layer (of the lubricating liquid) on the polymer. The lubricant layer can repel a wide range of materials, including simple and complex fluids (water, hydrocarbons, crude oil and bodily fluids), restore liquid-repellency after physical damage, and resist ice, microorganisms and insects adhesion. Some exemplary applications where self-lubricating polymers will be useful include energy-efficient, friction-reduction fluid handling and transportation, medical devices, anti-icing, optical sensing, and as self-cleaning, and anti-fouling materials operating in extreme environments.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: May 8, 2018
    Assignee: President and Fellows of Harvard College
    Inventors: Joanna Aizenberg, Michael Aizenberg, Jiaxi Cui, Stuart Dunn, Benjamin Hatton, Caitlin Howell, Philseok Kim, Tak Sing Wong, Xi Yao