Patents by Inventor Takeaki Itsuji

Takeaki Itsuji has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9164031
    Abstract: An apparatus configured to obtain a physical property of an object by time-domain spectroscopy includes: a detection unit; a delay unit configured to adjust a time difference between generation and detection; a shaping unit configured to collect the electromagnetic wave pulses; a waveform obtaining unit configured to construct a time waveform of the electromagnetic wave pulses; and a collecting position adjusting unit configured to adjust a collecting position. When the collecting position is moved, an amount of adjustment when the collecting position matches first and second reflection portions, respectively, of the object, and a difference by the delay unit required for detecting first and second pulses of the time waveform are obtained, and from an amount of change of the amount of adjustment and the difference, a thickness and a refractive index of a region between the first and second reflection portions of the object are calculated.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: October 20, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventor: Takeaki Itsuji
  • Publication number: 20150292946
    Abstract: A measurement apparatus includes a terahertz wave generating unit configured to generate a terahertz wave in response to incidence of pump light thereon; a terahertz wave detecting unit configured to detect the terahertz wave in response to incidence of probe light thereon; an adjusting unit configured to adjust an optical path length difference to adjust a timing at which the terahertz wave and the probe light reach the terahertz wave detecting unit; an amount-of-change detecting unit configured to detect an amount of change in the optical path length difference; a vibration obtaining unit configured to obtain information about a magnitude of vibration of the adjusting unit; a determining unit configured to determine whether the magnitude is within a range of an allowable value; and an output unit configured to output a measurement start trigger in a case where the determining unit determines the magnitude is within the range.
    Type: Application
    Filed: April 10, 2015
    Publication date: October 15, 2015
    Inventor: Takeaki Itsuji
  • Patent number: 9134182
    Abstract: A measurement apparatus including a convergence unit for converging the electromagnetic wave to the object; a detection unit for detecting electromagnetic waves from the object; and an adjustment unit for adjusting a relative position between the object and the convergence position set by the convergence unit in a detecting region selected by using interval information about an interval between a first electromagnetic wave from the first reflecting surface and a second electromagnetic wave from the second reflecting surface, the first and second electromagnetic waves being acquired by using a detection result of the detection unit, in which the detecting region is a region in which a measurement position of the object at the time of detecting electromagnetic waves from the object is determined based on relative position information selected from and by using a plurality of pieces of information on the relative position corresponding to the interval information.
    Type: Grant
    Filed: May 14, 2013
    Date of Patent: September 15, 2015
    Assignee: CANON KABUSHIKI KAISHA
    Inventor: Takeaki Itsuji
  • Publication number: 20150153274
    Abstract: A time-domain waveform of a terahertz wave is measured by a method based on time-domain spectroscopy by using an optical delay unit to adjust an optical path length along which excitation light propagates thereby adjusting a difference between a time at which the excitation light arrives at a generating unit configured to generate the terahertz wave and a time at which the excitation light arrives at a detection unit configured to detect the terahertz wave. The optical delay unit is driven according to a first speed pattern to acquire a first time-domain waveform. The optical delay unit is then driven according to a second speed pattern different from the first speed pattern to acquire a second time-domain waveform. The first time-domain waveform and the second time-domain waveform are averaged.
    Type: Application
    Filed: February 11, 2015
    Publication date: June 4, 2015
    Inventor: Takeaki Itsuji
  • Patent number: 9012833
    Abstract: The present invention provides a terahertz wave measuring apparatus and measurement method capable of improving the quantitativeness of obtained frequency spectrum information. In a measurement method in which a terahertz wave measuring apparatus is used, the terahertz wave measuring apparatus measures a time waveform of a terahertz wave relating to a calibration sample whose shape of a calibration spectrum is already known and obtains a measurement spectrum by transforming the time waveform. The calibration spectrum and the measurement spectrum are compared, and, on the basis of results of the comparison, time intervals of measurement data that form a time waveform are adjusted in order to calibrate the terahertz wave measuring apparatus.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: April 21, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventor: Takeaki Itsuji
  • Patent number: 8981301
    Abstract: A time-domain waveform of a terahertz wave is measured by a method based on time-domain spectroscopy by using an optical delay unit to adjust an optical path length along which excitation light propagates thereby adjusting a difference between a time at which the excitation light arrives at a generating unit configured to generate the terahertz wave and a time at which the excitation light arrives at a detection unit configured to detect the terahertz wave. The optical delay unit is driven according to a first speed pattern to acquire a first time-domain waveform. The optical delay unit is then driven according to a second speed pattern different from the first speed pattern to acquire a second time-domain waveform. The first time-domain waveform and the second time-domain waveform are averaged.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: March 17, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventor: Takeaki Itsuji
  • Publication number: 20150069246
    Abstract: An information obtaining apparatus includes a splitting unit, a terahertz wave generation unit, a terahertz wave detection unit, a fiber, a changing unit that changes an optical path length difference between optical path lengths of pump light and probe light by changing an optical path length of the fiber, a waveform construction unit, and an obtaining unit that obtains information related to the optical path length of the fiber. The obtaining unit includes a splitting unit that splits the pump or probe light before propagating through the fiber into first light and second light, a formation unit that forms interfering light, and an optical detection unit that detects an intensity of the interfering light. The waveform construction unit constructs a terahertz wave time waveform by extracting a detection result of the terahertz wave detection unit based on a detection result of the optical detection unit.
    Type: Application
    Filed: September 9, 2014
    Publication date: March 12, 2015
    Inventor: Takeaki Itsuji
  • Publication number: 20150034825
    Abstract: The present invention relates to a device for radiating or receiving an electromagnetic wave. The device includes a substrate including a recess coated by a material that reflects the electromagnetic wave, a metal portion that radiates or receives the electromagnetic wave, and an electronic element connected to the metal portion on the substrate. The metal portion includes a portion provided above an opening of the recess and a portion which is located on the substrate and connected to the electronic element.
    Type: Application
    Filed: February 12, 2013
    Publication date: February 5, 2015
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Alexis Debray, Takeaki Itsuji
  • Publication number: 20150008324
    Abstract: An apparatus configured to obtain a physical property of an object by time-domain spectroscopy includes: a detection unit; a delay unit configured to adjust a time difference between generation and detection; a shaping unit configured to collect the electromagnetic wave pulses; a waveform obtaining unit configured to construct a time waveform of the electromagnetic wave pulses; and a collecting position adjusting unit configured to adjust a collecting position. When the collecting position is moved, an amount of adjustment when the collecting position matches first and second reflection portions, respectively, of the object, and a difference by the delay unit required for detecting first and second pulses of the time waveform are obtained, and from an amount of change of the amount of adjustment and the difference, a thickness and a refractive index of a region between the first and second reflection portions of the object are calculated.
    Type: Application
    Filed: February 27, 2013
    Publication date: January 8, 2015
    Inventor: Takeaki Itsuji
  • Publication number: 20140361177
    Abstract: An apparatus including: an element configured to generate or detect a terahertz wave; a semi-spherical lens configured to guide the terahertz wave outgoing from the element or entering the element; and a holder configured to hold the semi-spherical lens and the element in a state in which a flat surface of the semi-spherical lens and the element are in contact with each other or in a state in which the flat surface of the semi-spherical lens and the element clamp a substance which allows the terahertz wave to pass therethrough and the flat surface of the semi-spherical lens and the element are in contact with the substance, wherein the holder includes: a resiliently deformable portion; and a position adjusting unit configured to adjust a relative position between the semi-spherical lens and the element in a direction parallel to the flat surface of the semi-spherical lens by resiliently deforming the resiliently deformable portion.
    Type: Application
    Filed: June 9, 2014
    Publication date: December 11, 2014
    Inventor: Takeaki Itsuji
  • Publication number: 20140209802
    Abstract: An apparatus configured to acquire information on an object to be measured by an electromagnetic wave pulse, the apparatus includes: a generating unit configured to generate the electromagnetic wave pulse with which the object to be measured is irradiated; a detecting unit configured to detect the electromagnetic wave pulse from the object to be measured; a casing including at least a part of a propagation path of the electromagnetic wave pulse leading from the generating unit to the detecting unit; and a measuring window unit configured to change a propagation distance of the electromagnetic wave pulse by moving a measuring window disposed in a part of the casing. The object to be measured is disposed on an opposite side of the propagation path of the electromagnetic wave pulse inside the casing by interposing the measuring window.
    Type: Application
    Filed: January 22, 2014
    Publication date: July 31, 2014
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Takeaki Itsuji
  • Publication number: 20140183363
    Abstract: The present invention provides a wavefront measuring apparatus and method, and object measuring apparatus which can increase resolution of wavefronts of electromagnetic wave pulses without being limited by the number of detecting elements. An embodiment of the present invention includes a detecting part detecting electric field strength of an electromagnetic wave pulse, and an optical delaying part delaying the electromagnetic wave pulse so as to provide a first propagation path and a second propagation path provided in a spatial region different from a spatial region of the first propagation path and having a length different from a length of the first propagation path, wherein time waveforms of the electromagnetic wave pulse are constructed using a signal associated with the electric field strength detected by the detecting part, and a wavefront is obtained based on the time waveforms and information associated with the lengths of the first and second propagation paths.
    Type: Application
    Filed: April 19, 2012
    Publication date: July 3, 2014
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Kousuke Kajiki, Toshihiko Ouchi, Takeaki Itsuji
  • Patent number: 8759769
    Abstract: A terahertz-wave generating device including an optical waveguide containing an electrooptic crystal includes: first and second optical waveguides through which first and second light beams respectively propagate; a propagation portion through which a first terahertz wave propagates, the first terahertz wave being generated from the second optical waveguide in a direction different from a direction of the second light beam; and a delay portion arranged at incidence sides of the first and second light beams and configured to delay the first light beam relative to the second light beam. The first optical waveguide and the second optical waveguide are arranged with the propagation portion interposed therebetween. A first equiphase surface of the first terahertz wave is substantially aligned with a second equiphase surface of a second terahertz wave generated from the first optical waveguide in a direction different from a direction of the first light beam.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: June 24, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventor: Takeaki Itsuji
  • Patent number: 8759779
    Abstract: A terahertz wave generation element includes a plurality of waveguides including an electro-optic crystal, and an optical coupling member for extracting a terahertz wave to the outside. The terahertz wave is generated when light propagates through the waveguides. The waveguides are arranged to be rotationally symmetric with respect to a predetermined axis. The optical coupling member is arranged so that wave fronts of the terahertz waves generated from the waveguides are matched together.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: June 24, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kousuke Kajiki, Takeaki Itsuji, Ryota Sekiguchi
  • Patent number: 8618486
    Abstract: An apparatus visualizing internal information of an object includes a detection unit of terahertz wave, a generating unit of a time waveform of the terahertz wave, a modulation unit, an adjustment unit, and an addition unit. The modulation unit sequentially performs spatial modulation on a propagation distance for each pixel of a terahertz wave corresponding to a pixel in a horizontal direction by using a plurality of modulation patterns, and emits a plurality of terahertz waves. Based on a time amount converted from the change of the propagation distances corresponding to the modulation patterns, the adjustment unit adjusts a position on a time axis of the time waveforms of a plurality of terahertz waves and calculates a new plurality of time waveforms. The addition unit adds a new time waveform for each pixel. The apparatus can suppress reduction in signal intensity of a terahertz wave while maintaining detection sensitivity.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: December 31, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventor: Takeaki Itsuji
  • Publication number: 20130334421
    Abstract: A measurement apparatus including a convergence unit for converging the electromagnetic wave to the object; a detection unit for detecting electromagnetic waves from the object; and an adjustment unit for adjusting a relative position between the object and the convergence position set by the convergence unit in a detecting region selected by using interval information about an interval between a first electromagnetic wave from the first reflecting surface and a second electromagnetic wave from the second reflecting surface, the first and second electromagnetic waves being acquired by using a detection result of the detection unit, in which the detecting region is a region in which a measurement position of the object at the time of detecting electromagnetic waves from the object is determined based on relative position information selected from and by using a plurality of pieces of information on the relative position corresponding to the interval information.
    Type: Application
    Filed: May 14, 2013
    Publication date: December 19, 2013
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: TAKEAKI ITSUJI
  • Patent number: 8536530
    Abstract: A terahertz wave transceiver configured to generate and detect terahertz waves based on time-domain spectroscopy includes a photoconductive device having a photoconductive film, a first electrode, and a second electrode. An excitation light illumination region is formed between the first and second electrodes. A bias applying unit applies a bias between the first electrode and the second electrode to generate the terahertz wave in the excitation light illumination region. A current detection unit detects a terahertz-wave current that is a component of a current generated in the excitation light illumination region and that is generated by an electric field of a received terahertz wave arriving from the outside. A current drawing unit draws a current originating from the bias applied by the bias applying unit. An adjustment unit determines the amount of the current drawn, based on the amount of the bias applied by the bias applying unit.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: September 17, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventor: Takeaki Itsuji
  • Patent number: 8513940
    Abstract: In a measurement of a time-domain waveform of a terahertz wave based on time-domain spectroscopy, a current signal including a component originating from the terahertz wave is detected using a photoconductive device, and a voltage signal corresponding to the detected current signal is detected. At a pre-processing stage before the voltage signal detection, an offset current included in the detected current signal and having no relation to the terahertz wave is drawn. The offset current is monitored and the magnitude of the drawn offset current is adjusted according to a result of the monitoring. A time-domain waveform of the terahertz wave is acquired based on the voltage signal detected while drawing the offset current. The monitoring of the offset current and the adjusting of the offset current are performed in a waiting state in which measurement of the time-domain waveform of the terahertz wave is not performed.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: August 20, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventor: Takeaki Itsuji
  • Patent number: 8451069
    Abstract: An oscillator having a negative resistance device and a resonator includes: a transmission line connected to the negative resistance device, a three-terminal device including a first terminal connected to the signal line side of the transmission line at a terminal part, a second terminal connected to the grounding line side of the transmission line and a third terminal receiving a control signal applied thereto; a first regulation unit for regulating the control signal to be applied to the third terminal; and a second regulation unit for regulating the voltage to be applied to the second terminal, the first and the second regulation unit being adapted to regulate respectively the control signal and the voltage so as to make the characteristic impedance of the transmission line and the impedance between the first and the second terminal show an impedance matching. The power consumption rate of the stabilizing circuit can be reduced.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: May 28, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Ryota Sekiguchi, Takeaki Itsuji
  • Patent number: 8405406
    Abstract: A detection apparatus and an imaging apparatus are capable of accurately conducting non-destructive observation of a target by using an incoherent electromagnetic wave. The detection apparatus has a generating section, a first coupler section, a delaying section, a second coupler section and a signal processing section. The generating section 101 includes a coherent electromagnetic wave source 102 and a diffusing section 103 for generating a pseudoincoherent electromagnetic wave by changing a propagation state of the coherent electromagnetic wave in accordance with a code pattern. The incoherent electromagnetic wave is split into first and second waves and the first wave is affected by the target of observation while the second wave is delayed by the delaying section. The first and second waves are then coupled to produce a coupled wave having a correlation signal of them and the signal is utilized to acquire information on the inside of the target of observation.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: March 26, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventor: Takeaki Itsuji