Patents by Inventor Takehiko Fujita

Takehiko Fujita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7938080
    Abstract: In a method for using a film formation apparatus for a semiconductor process, process conditions of a film formation process are determined. The process conditions include a preset film thickness of a thin film to be formed on a target substrate. Further, a timing of performing a cleaning process is determined in accordance with the process conditions. The timing is defined by a threshold concerning a cumulative film thickness of the thin film. The cumulative film thickness does not exceed the threshold where the film formation process is repeated N times (N is a positive integer), but exceeds the threshold where the film formation process is repeated N+1 times. The method includes continuously performing first to Nth processes, each consisting of the film formation process, and performing the cleaning process after the Nth process and before an (N+1)th process consisting of the film formation process.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: May 10, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Naotaka Noro, Yamato Tonegawa, Takehiko Fujita, Norifumi Kimura
  • Patent number: 7906168
    Abstract: An oxide film is formed on a target substrate by CVD, in a process field to be selectively supplied with a first process gas including a silicon source gas and a second process gas including an oxidizing gas. The oxide film is formed by performing cycles each alternately including first and second steps. The first step performs supply of the first process gas, thereby forming an adsorption layer containing silicon on a surface of the target substrate. The second performs supply of the second process gas, thereby oxidizing the adsorption layer on the surface of the target substrate. The silicon source gas is a univalent or bivalent aminosilane gas, and each of the cycles is arranged to use a process temperature lower than that used for a trivalent aminosilane gas.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: March 15, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Kazuhide Hasebe, Yoshihiro Ishida, Takehiko Fujita, Jun Ogawa, Shigeru Nakajima
  • Publication number: 20100319619
    Abstract: In an oxidation method for a semiconductor process, target substrates are placed at intervals in a vertical direction within a process field of a process container. An oxidizing gas and a deoxidizing gas are supplied to the process field from one side of the process field while gas is exhausted from the other side. One or both of the oxidizing gas and the deoxidizing gas are activated. The oxidizing gas and the deoxidizing gas are caused to react with each other, thereby generating oxygen radicals and hydroxyl group radicals within the process field. An oxidation process is performed on the surfaces of the target substrate by use of the oxygen radicals and the hydroxyl group radicals.
    Type: Application
    Filed: August 9, 2010
    Publication date: December 23, 2010
    Applicant: Tokyo Electron Limited
    Inventors: Takehiko FUJITA, Jun Ogawa, Shigeru Nakajima, Kazuhide Hasebe
  • Patent number: 7795158
    Abstract: In an oxidation method for a semiconductor process, target substrates are placed at intervals in a vertical direction within a process field of a process container. An oxidizing gas and a deoxidizing gas are supplied to the process field from one side of the process field while gas is exhausted from the other side. One or both of the oxidizing gas and the deoxidizing gas are activated. The oxidizing gas and the deoxidizing gas are caused to react with each other, thereby generating oxygen radicals and hydroxyl group radicals within the process field. An oxidation process is performed on the surfaces of the target substrate by use of the oxygen radicals and the hydroxyl group radicals.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: September 14, 2010
    Assignee: Tokyo Electron Limited
    Inventors: Takehiko Fujita, Jun Ogawa, Shigeru Nakajima, Kazuhide Hasebe
  • Publication number: 20100055829
    Abstract: Provided are apparatus and methods for forming phase change layers, and methods of manufacturing a phase change memory device. A source material is supplied to a reaction chamber, and purges from the chamber. A pressure of the chamber is varied according to the supply of the source material and the purge of the source material.
    Type: Application
    Filed: August 31, 2009
    Publication date: March 4, 2010
    Inventors: Dong-Hyun Im, Byoungjae Bae, Dohyung Kim, Sunglae Cho, Jinil Lee, Juhyung Seo, Hyeyoung Park, Takehiko Fujita
  • Patent number: 7648895
    Abstract: A vertical CVD apparatus is arranged to process a plurality of target substrates all together to form a silicon germanium film. The apparatus includes a reaction container having a process field configured to accommodate the target substrates, and a common supply system configured to supply a mixture gas into the process field. The mixture gas includes a first process gas of a silane family and a second process gas of a germane family. The common supply system includes a plurality of supply ports disposed at different heights.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: January 19, 2010
    Assignee: Tokyo Electron Limited
    Inventors: Masaki Kurokawa, Katsuhiko Komori, Norifumi Kimura, Kazuhide Hasebe, Takehiko Fujita, Akitake Tamura, Yoshikazu Furusawa
  • Publication number: 20090104760
    Abstract: A vertical CVD apparatus is arranged to process a plurality of target substrates all together to form a silicon germanium film. The apparatus includes a reaction container having a process field configured to accommodate the target substrates, and a common supply system configured to supply a mixture gas into the process field. The mixture gas includes a first process gas of a silane family and a second process gas of a germane family. The common supply system includes a plurality of supply ports disposed at different heights.
    Type: Application
    Filed: December 22, 2008
    Publication date: April 23, 2009
    Applicant: TOKYO ELECTON LIMITED
    Inventors: Masaki KUROKAWA, Katsuhiko Komori, Norifumi Kimura, Kazuhide Hasebe, Takehiko Fujita, Akitake Tamura, Yoshikazu Furusawa
  • Publication number: 20090090300
    Abstract: In a method for using a film formation apparatus for a semiconductor process, process conditions of a film formation process are determined. The process conditions include a preset film thickness of a thin film to be formed on a target substrate. Further, a timing of performing a cleaning process is determined in accordance with the process conditions. The timing is defined by a threshold concerning a cumulative film thickness of the thin film. The cumulative film thickness does not exceed the threshold where the film formation process is repeated N times (N is a positive integer), but exceeds the threshold where the film formation process is repeated N+1 times. The method includes continuously performing first to Nth processes, each consisting of the film formation process, and performing the cleaning process after the Nth process and before an (N+1)th process consisting of the film formation process.
    Type: Application
    Filed: December 9, 2008
    Publication date: April 9, 2009
    Inventors: Naotaka Noro, Yamato Tonegawa, Takehiko Fujita, Norifumi Kimura
  • Patent number: 7494943
    Abstract: In a method for using a film formation apparatus for a semiconductor process, process conditions of a film formation process are determined. The process conditions include a preset film thickness of a thin film to be formed on a target substrate. Further, a timing of performing a cleaning process is determined in accordance with the process conditions. The timing is defined by a threshold concerning a cumulative film thickness of the thin film. The cumulative film thickness does not exceed the threshold where the film formation process is repeated N times (N is a positive integer), but exceeds the threshold where the film formation process is repeated N+1 times. The method includes continuously performing first to Nth processes, each consisting of the film formation process, and performing the cleaning process after the Nth process and before an (N+1)th process consisting of the film formation process.
    Type: Grant
    Filed: October 6, 2006
    Date of Patent: February 24, 2009
    Assignee: Tokyo Electron Limited
    Inventors: Naotaka Noro, Yamato Tonegawa, Takehiko Fujita, Norifumi Kimura
  • Publication number: 20080107824
    Abstract: An oxide film is formed on a target substrate by CVD, in a process field to be selectively supplied with a first process gas including a source gas containing a film source element and no amino group, a second process gas including an oxidizing gas, and a third process gas including a preliminary treatment gas. A first step includes an excitation period of supplying the third process gas excited by an exciting mechanism, thereby performing a preliminary treatment on the target substrate by preliminary treatment gas radicals. A second step performs supply of the first process gas, thereby adsorbing the film source element on the target substrate. A third step includes an excitation period of supplying the second process gas excited by an exciting mechanism, thereby oxidizing the film source element adsorbed on the target substrate by oxidizing gas radicals.
    Type: Application
    Filed: September 5, 2007
    Publication date: May 8, 2008
    Inventors: Kazuhide Hasebe, Yoshihiro Ishida, Takehiko Fujita, Jun Ogawa, Shigeru Nakajima
  • Publication number: 20080095678
    Abstract: An oxidation apparatus for a semiconductor process includes a gas supply system configured to supply an oxidizing gas and a deoxidizing gas to the process field of a process container through a gas supply port disposed adjacent to target substrates on one side of the process field. The gas supply port includes a plurality of gas spouting holes arrayed over a length corresponding to the process field in a vertical direction. A heater is disposed around the process container and configured to heat the process field. A control section is preset to perform control such that the oxidizing gas and the deoxidizing gas are caused to react with each other, thereby generating oxygen radicals and hydroxyl group radicals within the process field, and an oxidation process is performed on the surfaces of the target substrate by use of the oxygen radicals and the hydroxyl group radicals.
    Type: Application
    Filed: October 18, 2007
    Publication date: April 24, 2008
    Inventors: Kazuhide Hasebe, Takehiko Fujita, Shigeru Nakajima, Jun Ogawa
  • Publication number: 20080081104
    Abstract: An oxide film is formed on a target substrate by CVD, in a process field to be selectively supplied with a first process gas including a silicon source gas and a second process gas including an oxidizing gas. The oxide film is formed by performing cycles each alternately including first and second steps. The first step performs supply of the first process gas, thereby forming an adsorption layer containing silicon on a surface of the target substrate. The second performs supply of the second process gas, thereby oxidizing the adsorption layer on the surface of the target substrate. The silicon source gas is a univalent or bivalent aminosilane gas, and each of the cycles is arranged to use a process temperature lower than that used for a trivalent aminosilane gas.
    Type: Application
    Filed: September 25, 2007
    Publication date: April 3, 2008
    Inventors: Kazuhide Hasebe, Yoshihiro Ishida, Takehiko Fujita, Jun Ogawa, Shigeru Nakajima
  • Publication number: 20080057199
    Abstract: In an oxidation method for a semiconductor process, target substrates are placed at intervals in a vertical direction within a process field of a process container. An oxidizing gas and a deoxidizing gas are supplied to the process field from one side of the process field while gas is exhausted from the other side. One or both of the oxidizing gas and the deoxidizing gas are activated. The oxidizing gas and the deoxidizing gas are caused to react with each other, thereby generating oxygen radicals and hydroxyl group radicals within the process field. An oxidation process is performed on the surfaces of the target substrate by use of the oxygen radicals and the hydroxyl group radicals.
    Type: Application
    Filed: August 28, 2007
    Publication date: March 6, 2008
    Inventors: Takehiko Fujita, Jun Ogawa, Shigeru Nakajima, Kazuhide Hasebe
  • Patent number: 7273818
    Abstract: In a film-formation method for a semiconductor process, a silicon germanium film is formed on a target substrate by CVD in a process field within a reaction container. Then, a silicon coating film is formed to cover the silicon germanium film by CVD in the process field, while increasing temperature of the process field from the first temperature to a second temperature. Then, a silicon film is formed on the coating film by CVD in the process field.
    Type: Grant
    Filed: October 18, 2004
    Date of Patent: September 25, 2007
    Assignee: Tokyo Electron Limited
    Inventors: Masaki Kurokawa, Norifumi Kimura, Takehiko Fujita, Yoshikazu Furusawa, Katsuhiko Komori, Kazuhide Hasebe
  • Publication number: 20070131537
    Abstract: A semiconductor process system (10) includes a measuring section (40), an information processing section (51), and a control section (52). The measuring section (40) measures a characteristic of a test target film formed on a target substrate (W) by a semiconductor process. The information processing section (51) calculates a positional correction amount of the target substrate (W) necessary for improving planar uniformity of the characteristic, based on values of the characteristic measured by the measuring section (40) at a plurality of positions on the test target film. The control section (52) controls a drive section (30A, 32A) of a transfer device (30), based on the positional correction amount, when the transfer device (30) transfers a next target substrate (W) to the support member (17) to perform the semiconductor process.
    Type: Application
    Filed: January 24, 2007
    Publication date: June 14, 2007
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: KOICHI SAKAMOTO, Yamato Tonegawa, Takehiko Fujita
  • Patent number: 7211514
    Abstract: A method for subjecting target substrates to a heat process under a vacuum pressure includes a transfer step, heating-up and pressure-reducing step, and heat-processing step. The transfer step is arranged to transfer into a reaction chamber a holder that supports the substrates at intervals. The heating-up and pressure-reducing step following the transfer step is arranged to heat up the reaction chamber to a process temperature, and exhaust the reaction chamber to a process pressure. During the heating-up and pressure-reducing step, the reaction chamber is set at the process pressure after being set at the process temperature, to form a state where the reaction chamber has the process temperature under a pressure higher than the process pressure. The heat-processing step following the heating-up and pressure-reducing step is arranged to subject the substrates to the heat process at the process temperature and process pressure.
    Type: Grant
    Filed: August 25, 2004
    Date of Patent: May 1, 2007
    Assignee: Tokyo Electron Limited
    Inventors: Takehiko Fujita, Akitake Tamura, Keisuke Suzuki, Kazuhide Hasebe, Mitsuhiro Okada
  • Publication number: 20070093075
    Abstract: In a method for using a film formation apparatus for a semiconductor process, process conditions of a film formation process are determined. The process conditions include a preset film thickness of a thin film to be formed on a target substrate. Further, a timing of performing a cleaning process is determined in accordance with the process conditions. The timing is defined by a threshold concerning a cumulative film thickness of the thin film. The cumulative film thickness does not exceed the threshold where the film formation process is repeated N times (N is a positive integer), but exceeds the threshold where the film formation process is repeated N+1 times. The method includes continuously performing first to Nth processes, each consisting of the film formation process, and performing the cleaning process after the Nth process and before an (N+1)th process consisting of the film formation process.
    Type: Application
    Filed: October 6, 2006
    Publication date: April 26, 2007
    Inventors: Naotaka Noro, Yamato Tonegawa, Takehiko Fujita, Norifumi Kimura
  • Patent number: 7179334
    Abstract: A semiconductor process system (10) includes a measuring section (40), an information processing section (51), and a control section (52). The measuring section (40) measures a characteristic of a test target film formed on a target substrate (W) by a semiconductor process. The information processing section (51) calculates a positional correction amount of the target substrate (W) necessary for improving planar uniformity of the characteristic, based on values of the characteristic measured by the measuring section (40) at a plurality of positions on the test target film. The control section (52) controls a drive section (30A, 32A) of a transfer device (30), based on the positional correction amount, when the transfer device (30) transfers a next target substrate (W) to the support member (17) to perform the semiconductor process.
    Type: Grant
    Filed: March 19, 2002
    Date of Patent: February 20, 2007
    Assignee: Tokyo Electron Limited
    Inventors: Koichi Sakamoto, Yamato Tonegawa, Takehiko Fujita
  • Publication number: 20060099805
    Abstract: A thermal processing unit of the present invention includes: a holder that holds a plurality of substrates; a reaction container into which the holder is conveyed; a process-gas supplying mechanism that supplies a process gas into the reaction container; and a heating mechanism that heats the reaction container to conduct a film-forming process to the substrates when the process gas is supplied. Flow-rate-parameter table-data associating number-data of the substrates to be processed by one batch-process with target-data of flow-rate parameter of the process gas is stored in a flow-rate-parameter table-data storing part. A controlling unit obtains target-data of flow-rate parameter of the process gas, depending on an actual number of the substrates to be processed by one batch-process, based on the flow-rate-parameter table-data stored in the flow-rate-parameter table-data storing part, and controls the process-gas supplying mechanism according to the obtained target-data.
    Type: Application
    Filed: October 29, 2003
    Publication date: May 11, 2006
    Inventors: Takehiko Fujita, Mitsuhiro Okada, Kota Umezawa, Kazuhide Hasebe, Koichi Sakamoto
  • Publication number: 20060021570
    Abstract: A hemispherical grained (HSG) film is oxidized to form an oxidized layer at the surface part of the HSG film, and then the oxidized layer is etched to be removed. The size of the hemispherical grains after etching is smaller than that as formed.
    Type: Application
    Filed: July 29, 2005
    Publication date: February 2, 2006
    Inventors: Kazuhide Hasebe, Norifumi Kimura, Takehiko Fujita, Yoshikazu Furusawa