Patents by Inventor Takuji Tsujita

Takuji Tsujita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100118004
    Abstract: A protective layer of a plasma display panel has a base protective layer formed of a thin film of a metal oxide, and a particle layer. The particle layer is formed by sticking, to the base protective layer, single-crystal particles of magnesium oxide such that the emission intensity of a peak at 200 nm to 300 nm is at least twice the emission intensity of a peak at 300 nm to 550 nm in an emission spectrum of cathode luminescence light emission. A panel driving circuit drives the panel in a manner that a second subfield group having a plurality of subfields is temporally disposed after a first subfield group having a plurality of subfields to form one field period. Each subfield of the first subfield group has initializing period (Ti), address period (Tw) for forming wall charge to cause a sustain discharge, and sustain period (Ts). Each subfield of the second subfield group has address period (Tw) for erasing wall charge necessary for causing a sustain discharge, and sustain period (Ts).
    Type: Application
    Filed: April 14, 2009
    Publication date: May 13, 2010
    Inventors: Mitsuhiro Murata, Takuji Tsujita, Toshikazu Wakabayashi, Hiroshi Asano, Masaharu Terauchi
  • Publication number: 20100109984
    Abstract: Protective layer of front plate of the plasma display panel is formed of base protective layer and particle layer. Base protective layer is a thin film of metal oxide containing at least one of magnesium oxide, strontium oxide, calcium oxide, and barium oxide. Particle layer is formed in a manner that single-crystal particles of magnesium oxide having a peak of emission intensity at 200-300 nm two times or higher than another peak of emission intensity at 300-550 nm in the emission spectrum in cathode luminescence emission are stuck on base protective layer. The panel driving circuit drives the panel with a subfield structure in which the subfields are temporally disposed so that magnitude of luminance weight has monotonous decrease from a subfield where the all-cell initializing operation is performed to a subfield where the next all-cell initializing operation is performed.
    Type: Application
    Filed: April 13, 2009
    Publication date: May 6, 2010
    Inventors: Mitsuhiro Murata, Takuji Tsujita, Toshikazu Wakabayashi, Hiroshi Asano, Masaharu Terauchi
  • Publication number: 20100096986
    Abstract: The present invention improves discharge characteristics of a protective layer in order to provide a PDP that exhibits excellent display performance even if the PDP is of a fine-cell structure. The present invention also provides a manufacturing method for the PDP. In particular, a protective layer 8 is composed of an MgO film layer 81 and an MgO particle layer 82 that is made of MgO particles 16. The MgO particles 16 are formed by burning an MgO precursor and satisfy that a/b?1, where a denotes a spectrum integral value in a wavelength region of a CL spectrum from 200 nm to 300 nm, exclusive of 300 nm, and b denotes a spectrum integral value in a wavelength region of the CL spectrum from 300 nm to 550 nm, exclusive of 550 nm.
    Type: Application
    Filed: October 19, 2007
    Publication date: April 22, 2010
    Inventors: Takuji Tsujita, Yusuke Fukui, Masaharu Terauchi, Mikihiko Nishitani, Michiko Okafuji, Kaname Mizokami
  • Publication number: 20100045573
    Abstract: The present invention improves discharge characteristics of a protective layer in order to provide a PDP that exhibits excellent display performance even if the PDP is of a fine-cell structure. The present invention also provides a manufacturing method for the PDP. In particular, a protective layer 8 is composed of an MgO film layer 81 and an MgO particle layer 82 that is made of MgO particles 16. The MgO particles 16 are formed by burning an MgO precursor and satisfy that a/b?1. 2, where a denotes a spectrum integral value in a wavelength region of a CL spectrum from 650 nm to 900 nm, exclusive of 900 nm, and b denotes a spectrum integral value in a wavelength region of the CL spectrum from 300 nm to 550 nm, exclusive of 550 nm.
    Type: Application
    Filed: October 19, 2007
    Publication date: February 25, 2010
    Inventors: Masaharu Terauchi, Yusuke Fukui, Takuji Tsujita, Michiko Okafuji, Mikihiko Nishitana
  • Publication number: 20090167176
    Abstract: A PDP can be driven at low voltage while having a charge retention property in a protection layer, and has favorable image display properties. Additionally, the PDP prevents the occurrence of discharge delay and realizes high-quality image display by performing favorable high-speed driving in a high definition PDP. To achieve this, a surface layer (8) is formed to a film thickness of 1 ?m in an oxygen atmosphere having an oxygen partial pressure of 0.025 Pa or more, the surface layer (8) is provided on a face of a dielectric layer (7) on a discharge space side. Furthermore, MgO particles (16) are dispersed on a surface of the surface layer (8). The surface layer (8) has the effects of protecting the dielectric layer (7) from ion bombardment during discharge, reducing the firing voltage, and preventing excessive electron loss. Also, the MgO particles (16) have a high initial electron emission property.
    Type: Application
    Filed: April 27, 2007
    Publication date: July 2, 2009
    Inventors: Yusuke Fukui, Takuji Tsujita, Jun Hashimoto, Hikaru Nishitani, Masaharu Terauchi, Mikihiko Nishitani
  • Publication number: 20090146566
    Abstract: “Discharge delay” and “dependence of discharge delay on temperatures” are solved by improving a protective layer, thus a PDP can be driven at a low voltage. Furthermore, the PDP can display excellent images by suppressing “dependence of discharge delay on space charges.” Liquid-phase magnesium alkoxide (Mg(OR)2) or acetylacetone magnesium ate whose purity is 99.95% or more is prepared, and is hydrolyzed by adding a small amount of acids to the solution. Thus, a gel of magnesium hydroxide that is a magnesium oxide precursor is formed. Burning the gel in atmosphere at 700° C. or more produces powder containing MgO particles 16a-16d having the NaCl crystal structure with (100) and (111) crystal faces or with (100), (110) and (111) crystal faces. By pasting the powder on a dielectric layer 7 or a surface layer 8, the MgO powder 16 is formed so as to serve as the protective layer.
    Type: Application
    Filed: May 31, 2007
    Publication date: June 11, 2009
    Inventors: Yusuke Fukui, Masaharu Terauchi, Takuji Tsujita
  • Publication number: 20090140652
    Abstract: “Discharge delay” and “dependence of discharge delay on temperatures” are solved by improving a protective layer, thus a PDP can be driven at a low voltage. Furthermore, the PDP can display excellent images by suppressing “dependence of discharge delay on space charges.” Liquid-phase magnesium alkoxide (Mg (OR)2) or acetylacetone magnesium ate whose purity is 99.95% or more is prepared, and is hydrolyzed by adding a small amount of acids to the solution. Thus, a gel of magnesium hydroxide that is a magnesium oxide precursor is formed. Burning the gel in atmosphere at 700° C. or more produces powder containing MgO particles 16a-16d having the NaCl crystal structure with (100) and (111) crystal faces or with (100), (110) and (111) crystal faces. By pasting the powder on a dielectric layer 7 or a surface layer 8, the MgO powder 16 is formed so as to serve as the protective layer.
    Type: Application
    Filed: May 31, 2007
    Publication date: June 4, 2009
    Inventors: Yusuke Fukui, Masaharu Terauchi, Takuji Tsujita
  • Publication number: 20080157672
    Abstract: Disclosed is a PDP and a manufacturing method therefor having improved display performance even if the PDP is of a fine-cell structure. A protective layer of the PDP is composed of an MgO film layer and an MgO particle layer that is made of MgO particles. The MgO particles are formed by burning an MgO precursor and satisfy that a/b?1, where a denotes a spectrum integral value in a wavelength region of a CL spectrum from 200 nm to 300 nm, exclusive of 300 nm, and b denotes a spectrum integral value in a wavelength region of the CL spectrum from 300 nm to 550 nm, exclusive of 550 nm. With provision of the MgO particle layer, the discharge characteristics of the protective layer improve (shorter discharge delay and less temperature dependence of the discharge delay). Consequently, the PDP is ensured to exhibit excellent display performance.
    Type: Application
    Filed: December 27, 2007
    Publication date: July 3, 2008
    Inventors: Takuji Tsujita, Yusuke Fukui, Masaharu Terauchi, Mikihiko Nishitani, Michiko Okafuji, Shinichiro Ishino, Kaname Mizokami
  • Publication number: 20080157673
    Abstract: “Discharge delay” and “dependence of discharge delay on temperatures” are solved by improving a protective layer, thus a PDP can be driven at a low voltage. Furthermore, the PDP can display excellent images by suppressing “dependence of discharge delay on space charges.” Liquid-phase magnesium alkoxide(Mg(OR)2) or acetylacetone magnesium ate whose purity is 99.95% and over is prepared, and is hydrolyzed by adding a small amount of acids to the solution. Thus, a gel of magnesium hydroxide that is a magnesium oxide precursor is formed. Burning the gel in atmosphere at 700° C. and over produces powder containing MgO particles 16a-16d having the NaCl crystal structure with (100) and (111) crystal faces or with (100), (110) and (111) crystal faces. By pasting the powder on a dielectric layer 7 or a surface layer 8, the MgO powder 16 is formed so as to serve as the protective layer.
    Type: Application
    Filed: December 27, 2007
    Publication date: July 3, 2008
    Inventors: Yusuke Fukui, Masaharu Terauchi, Takuji Tsujita
  • Publication number: 20080160346
    Abstract: Disclosed is a PDP and a manufacturing method therefor having improved display performance even if the PDP is of a fine-cell structure. The PDP has a protective layer that is composed of an MgO film layer and an MgO particle layer made of MgO particles. The MgO particles are formed by burning an MgO precursor and satisfy that a/b?1.2, where a denotes a spectrum integral value in a wavelength region of a CL spectrum from 650 nm to 900 nm, exclusive of 900 nm, and b denotes a spectrum integral value of a wavelength region of the CL spectrum from 300 nm to 550 nm, exclusive of 550 nm. The MgO particles have many high energy levels in the energy band and thus emission of initial electrons is caused more easily, which leads to suppress discharge delay and also to suppress temperature dependence of the discharge delay.
    Type: Application
    Filed: December 27, 2007
    Publication date: July 3, 2008
    Inventors: Masaharu Terauchi, Yusuke Fukui, Takuji Tsujita, Michiko Okafuji, Mikihiko Nishitani