Patents by Inventor Tapashree Roy

Tapashree Roy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200166783
    Abstract: Embodiments of metasurfaces having nanostructures with desired geometric profiles and configurations are provided in the present disclosure. In one embodiment, a metasurface includes a nanostructure formed on a substrate, wherein the nanostructure is cuboidal or cylindrical in shape. In another embodiment, a metasurface includes a plurality of nanostructures on a substrate, wherein each of the nanostructures has a gap greater than 35 nm spaced apart from each other. In yet another embodiment, a metasurface includes a plurality of nanostructures on a substrate, wherein the nanostructures are fabricated from at least one of TiO2, silicon nitride, or amorphous silicon, or GaN or aluminum zinc oxide or any material with refractive index greater than 1.8, and absorption coefficient smaller than 0.001, the substrate is transparent with absorption coefficient smaller than 0.001.
    Type: Application
    Filed: October 14, 2019
    Publication date: May 28, 2020
    Inventors: Tapashree ROY, Wayne MCMILLAN, Rutger MEYER TIMMERMAN THIJSSEN
  • Publication number: 20190318957
    Abstract: Systems and methods herein are related to the formation of optical devices including stacked optical element layers using silicon wafers, glass, or devices as substrates. The optical elements discussed herein can be fabricated on temporary or permanent substrates. In some examples, the optical devices are fabricated to include transparent substrates or devices including charge-coupled devices (CCD), or complementary metal-oxide semiconductor (CMOS) image sensors, light-emitting diodes (LED), a micro-LED (uLED) display, organic light-emitting diode (OLED) or vertical-cavity surface-emitting laser (VCSELs). The optical elements can have interlayers formed in between optical element layers, where the interlayers can range in thickness from 1 nm to 3 mm.
    Type: Application
    Filed: February 22, 2019
    Publication date: October 17, 2019
    Inventors: Ludovic GODET, Wayne MCMILLAN, Rutger MEYER TIMMERMAN THIJSSEN, Naamah ARGAMAN, Tapashree ROY, Sage DOSHAY
  • Patent number: 10324314
    Abstract: An optical device includes a nanostructured transparent dielectric film, which is a Huygens metasurface. The Huygens metasurface imparts a phase change to light propagating through or reflecting from the surface. The phase change can be achieved by means of a resonant interaction between light and the Huygens resonators, resulting in a controllable phase change of 0 to 2? with approximately 100% light transmission characterized by a below 0.1 dielectric loss tangent of delta and with the height of the resonators less than the wavelength of light. In one embodiment, the metasurface includes titanium dioxide, but many materials or stacks of different materials may be used. The optical device is functional throughout the visible spectrum between 380 and 700 nm. The nanostructured transparent dielectric film includes a plurality of Huygens resonators.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: June 18, 2019
    Assignee: UChicago Argonne, LLC
    Inventors: David A. Czaplewski, Daniel Lopez, Tapashree Roy
  • Publication number: 20190128507
    Abstract: Embodiments described herein relate to nanostructured trans-reflective filters having sub-wavelength dimensions. In one embodiment, the trans-reflective filter includes a film stack that transmits a filtered light within a range of wavelengths and reflects light not within the first range of wavelengths. The film stack includes a first metal film disposed on a substrate having a first thickness, a first dielectric film disposed on the first metal film having a second thickness, a second metal film disposed on the first dielectric film having a third thickness, and a second dielectric film disposed on the second metal film having a fourth thickness.
    Type: Application
    Filed: March 15, 2018
    Publication date: May 2, 2019
    Inventors: Tapashree Roy, Rutger Meyer Timmerman Thijssen, Robert Jan Visser
  • Publication number: 20190129243
    Abstract: Aspects disclosed herein relate to color filters for display devices, and more specifically to color filters for transmitting or reflecting and recycling colors of light in liquid crystal display devices. In one aspect, a metasurface is formed between two polarizers in an LCD device. In another aspect, a metasurface is formed on a white light guide of an LCD device. The metasurface is formed to transmit desired color(s) of light and to reflect undesired color(s) of light back into the light guide to be recycled and passed through the LCD device elsewhere. Using the color filter to recycle reflected colors of light increases the efficiency of the display device, such as the LCD device.
    Type: Application
    Filed: August 20, 2018
    Publication date: May 2, 2019
    Inventors: Rutger MEYER TIMMERMAN THIJSSEN, Robert Jan VISSER, Tapashree ROY
  • Publication number: 20180341124
    Abstract: An optical device includes a nanostructured transparent dielectric film, which is a Huygens metasurface. The Huygens metasurface imparts a phase change to light propagating through or reflecting from the surface. The phase change can be achieved by means of a resonant interaction between light and the Huygens resonators, resulting in a controllable phase change of 0 to 2? with approximately 100% light transmission characterized by a below 0.1 dielectric loss tangent of delta and with the height of the resonators less than the wavelength of light. In one embodiment, the metasurface includes titanium dioxide, but many materials or stacks of different materials may be used. The optical device is functional throughout the visible spectrum between 380 and 700 nm. The nanostructured transparent dielectric film includes a plurality of Huygens resonators.
    Type: Application
    Filed: May 24, 2017
    Publication date: November 29, 2018
    Inventors: David A. CZAPLEWSKI, Daniel LOPEZ, Tapashree ROY
  • Patent number: 9606415
    Abstract: A super-oscillatory lens (10) having a pre-defined pattern to spatially modulate the light beam in amplitude and/or phase which has a blocking element (6) formed integrally with the lens, or as a separate component adjacent to the lens, which is opaque to the light beam to cause diffraction of the light beam around the blocking element and formation of a shadow region (20). The lens and blocking element focus the light beam to form an elongate needle-shaped focus (15) in the shadow region (20). In any application in which it is necessary to scan a small spot over a surface, compared with a conventional objective lens focus the elongate shape of the focus relaxes the requirement on a feedback loop to maintain a constant separation between a scan head and a surface being scanned. The elongate shape is also ideal shape for materials processing applications.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: March 28, 2017
    Assignee: University of Southampton
    Inventors: Nikolay Ivanovich Zheludev, Salatore Savo, Tapashree Roy, Vassili Savinov, Mark Richard Dennis, Edward Thomas Foss Rogers, Jari Juhani Lindberg
  • Publication number: 20150043048
    Abstract: A super-oscillatory lens (10) having a pre-defined pattern to spatially modulate the light beam in amplitude and/or phase which has a blocking element (6) formed integrally with the lens, or as a separate component adjacent to the lens, which is opaque to the light beam to cause diffraction of the light beam around the blocking element and formation of a shadow region (20). The lens and blocking element focus the light beam to form an elongate needle-shaped focus (15) in the shadow region (20). In any application in which it is necessary to scan a small spot over a surface, compared with a conventional objective lens focus the elongate shape of the focus relaxes the requirement on a feedback loop to maintain a constant separation between a scan head and a surface being scanned. The elongate shape is also ideal shape for materials processing applications.
    Type: Application
    Filed: January 18, 2013
    Publication date: February 12, 2015
    Inventors: Nikolay Ivanovich Zheludev, Salatore Savo, Tapashree Roy, Vassili Savinov, Mark Richard Dennis, Edward Thomas Foss Rogers, Jari Juhani Lindberg