Patents by Inventor Terence B. Hook

Terence B. Hook has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200013891
    Abstract: A semiconductor device includes a substrate having an input/output (IO) field-effect transistor (FET) device area, and an IO FET device formed in the IO FET device area. The IO FET device includes at least two fin structures separated by a distance associated with a length of a channel connecting the at least two fin structures. The length of the channel is determined based on at least one voltage for implementing the IO FET device.
    Type: Application
    Filed: September 19, 2019
    Publication date: January 9, 2020
    Inventors: Xuefeng Liu, Junli Wang, Brent A. Anderson, Terence B. Hook, Gauri Karve
  • Publication number: 20200006552
    Abstract: According to an embodiment of the present invention, a method for forming a contact for a transistor includes forming a first doped region over a semiconductor substrate. A first fin is formed over the first doped region. A gate is formed alongside portions of the first fin. A void is created by removing the first fin to expose a portion of the first doped region. A metal is deposited in the void to create the contact.
    Type: Application
    Filed: June 29, 2018
    Publication date: January 2, 2020
    Inventors: Brent A. Anderson, Terence B. Hook, Junli Wang
  • Publication number: 20200006353
    Abstract: According to an embodiment of the present invention, a method for forming a contact for a transistor includes forming a first doped region over a semiconductor substrate. A second doped region is formed in portions of the first doped region in which portions the first doped region extends below the second doped region. A gate is formed alongside portions of a first fin. Portions of the second doped region and portions of the first doped region extending below the second doped region are removed. Portions of the gate are removed. A metal is deposited in the removed portion of the gate, the removed portion of second doped region, and the first doped region extending below the second doped region to create the contact.
    Type: Application
    Filed: June 29, 2018
    Publication date: January 2, 2020
    Inventors: Brent A. Anderson, Terence B. Hook, Junli Wang
  • Patent number: 10515859
    Abstract: A method for forming semiconductor devices includes forming a highly doped region. A stack of alternating layers is formed on the substrate. The stack is patterned to form nanosheet structures. A dummy gate structure is formed over and between the nanosheet structures. An interlevel dielectric layer is formed. The dummy gate structures are removed. SG regions are blocked, and top sheets are removed from the nanosheet structures along the dummy gate trench. A bottommost sheet is released and forms a channel for a field effect transistor device by etching away the highly doped region under the nanosheet structure and layers in contact with the bottommost sheet. A gate structure is formed in and over the dummy gate trench wherein the bottommost sheet forms a device channel for the EG device.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: December 24, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bruce B. Doris, Terence B. Hook, Junli Wang
  • Patent number: 10504889
    Abstract: Embodiments of the invention include first and second devices formed on a substrate. The first device includes a bottom source or drain (S/D) region, a plurality of fins formed on portions of the bottom S/D region, a bottom spacer formed on the bottom S/D region, a dielectric layer, a gate, a top S/D region formed on each fin of a plurality of fins, and one or more contacts. The dielectric layer is disposed between the gate and the fin of the plurality of fins. The second device includes a bottom doped region, a channel formed the bottom doped region, a sidewall doped region of the channel, a gate coupled to the sidewall doped region, a top doped region, and one or more contacts. A junction is formed between the channel and the sidewall doped region. The cap layer is formed on the gate and the top doped region.
    Type: Grant
    Filed: July 17, 2018
    Date of Patent: December 10, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brent A. Anderson, Huiming Bu, Terence B. Hook, Xuefeng Liu, Junli Wang
  • Publication number: 20190371676
    Abstract: A semiconductor device including pairs of multiple threshold voltage (Vt) devices includes at least a first region corresponding to a first pair of Vt devices, a second region corresponding to a second pair of Vt devices including a first dipole layer, and a third region corresponding to a third pair of Vt devices including a second dipole layer different from the first dipole layer.
    Type: Application
    Filed: June 4, 2018
    Publication date: December 5, 2019
    Inventors: Ruqiang Bao, Vijay Narayanan, Terence B. Hook, Hemanth Jagannathan
  • Publication number: 20190326279
    Abstract: Logic gate designs (e.g., NAND, NOR, Inverter) for stacked VTFET designs are provided. In one aspect, a logic gate device is provided. The logic gate device includes: at least one top vertical transport field-effect transistor (VTFET1) sharing a fin with at least one bottom VTFET (VTFET2); a power rail connected to a power contact of the logic gate device; and a ground rail, adjacent to the power rail, connected to a ground contact of the logic gate device.
    Type: Application
    Filed: June 27, 2019
    Publication date: October 24, 2019
    Inventors: Chen Zhang, Tenko Yamashita, Terence B. Hook
  • Patent number: 10418462
    Abstract: A vertical fin field-effect-transistor and a method for fabricating the same. The vertical fin field-effect-transistor includes at least a substrate, a first source/drain layer, and a plurality of fins each disposed on and in contact with the first source/drain layer. Silicide regions are disposed within a portion of the first source/drain layer. A gate structure is in contact with the plurality of fins, and a second source/drain layer is disposed on the gate structure. The method includes forming silicide in a portion of a first source/drain layer. A first spacer layer is formed in contact with at least the silicide, the first source/drain layer and the plurality of fins. A gate structure is formed in contact with the plurality of fins and the first spacer layer. A second spacer layer is formed in contact with the gate structure and the plurality of fins.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: September 17, 2019
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Huiming Bu, Terence B. Hook, Fee Li Lie, Junli Wang
  • Publication number: 20190267490
    Abstract: A structure capable of effectively preventing dopant diffusion from source/drain regions into an underlying semiconductor-on-insulator (SOI) layer of fully-depleted SOI transistors with U-shaped channels is provided. By inserting a dopant diffusion barrier layer between an SOI layer of an SOI substrate and a doped extension layer from which source/drain extension regions are derived, the undesired dopant diffusion from the source/drain extension regions into the underlying SOI layer can be prevented.
    Type: Application
    Filed: May 7, 2019
    Publication date: August 29, 2019
    Inventors: Kangguo Cheng, Robert H. Dennard, Bruce B. Doris, Terence B. Hook
  • Publication number: 20190258771
    Abstract: Methods and systems for checking a wafer-level design for compliance with a rule include determining a tile area, having a size that is based on the one or more layout design rules, that crosses a boundary between adjacent chip layouts and that leaves at least a portion of each chip layout uncovered. It is determined that a portion of a first chip layout inside the tile area fails to comply with one or more layout design rules. The first chip layout is modified, responsive to the determination that the first chip layout within the tile area fails to comply with the one or more layout design rules, to bring non-compliant periphery chip regions into compliance. It is determined that the portion of the first chip layout within the tile area complies with the one or more design rules after modifying the first chip layout. A multi-chip wafer is fabricated that includes the chip layouts.
    Type: Application
    Filed: May 1, 2019
    Publication date: August 22, 2019
    Inventors: Terence B. Hook, Larry Wissel
  • Publication number: 20190252495
    Abstract: Semiconductor devices and methods of making the same include forming a stack of alternating layers of channel material and sacrificial material. The sacrificial material is etched away to free the layers of channel material. A gate stack is formed around the layers of channel material. At least one layer of channel material is deactivated. Source and drain regions are formed in contact with the at least one layer of active channel material.
    Type: Application
    Filed: April 26, 2019
    Publication date: August 15, 2019
    Inventors: Ruqiang Bao, Michael A. Guillorn, Terence B. Hook, Nicolas J. Loubet, Robert R. Robison, Reinaldo A. Vega, Tenko Yamashita
  • Patent number: 10381346
    Abstract: Logic gate designs (e.g., NAND, NOR, Inverter) for stacked VTFET designs are provided. In one aspect, a logic gate device is provided. The logic gate device includes: at least one top vertical transport field-effect transistor (VTFET1) sharing a fin with at least one bottom VTFET (VTFET2); a power rail connected to a power contact of the logic gate device; and a ground rail, adjacent to the power rail, connected to a ground contact of the logic gate device. A method of forming a logic gate device is also provided.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: August 13, 2019
    Assignee: International Business Machines Corporation
    Inventors: Chen Zhang, Tenko Yamashita, Terence B. Hook
  • Patent number: 10366897
    Abstract: A method for adjusting a threshold voltage includes depositing a strained liner on a gate structure to strain a gate dielectric. A threshold voltage of a transistor is adjusted by controlling an amount of strain in the liner to control an amount of work function (WF) modulating species that diffuse into the gate dielectric in a channel region. The liner is removed.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: July 30, 2019
    Assignee: International Business Machines Corporation
    Inventors: Takashi Ando, Mohit Bajaj, Terence B. Hook, Rajan K. Pandey, Rajesh Sathiyanarayanan
  • Publication number: 20190229117
    Abstract: Logic gate designs (e.g., NAND, NOR, Inverter) for stacked VTFET designs are provided. In one aspect, a logic gate device is provided. The logic gate device includes: at least one top vertical transport field-effect transistor (VTFET1) sharing a fin with at least one bottom VTFET (VTFET2); a power rail connected to a power contact of the logic gate device; and a ground rail, adjacent to the power rail, connected to a ground contact of the logic gate device.
    Type: Application
    Filed: January 24, 2018
    Publication date: July 25, 2019
    Inventors: Chen Zhang, Tenko Yamashita, Terence B. Hook
  • Patent number: 10346580
    Abstract: Methods and systems for checking a wafer-level design for compliance with a rule include determining whether each chip layout out of multiple chip layouts complies internally with one or more layout design rules. A tile area is determined, having a size that is based on the one or more layout design rules, that crosses a boundary between adjacent chip layouts and that leaves at least a portion of each chip layout uncovered. It is determined whether portions of the plurality of chip layouts inside the tile area comply with the one or more layout design rules. The chip layouts are modified, if chip layout area within the tile area fails to comply with the design rule, to bring non-compliant periphery chip regions into compliance.
    Type: Grant
    Filed: March 25, 2016
    Date of Patent: July 9, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Terence B. Hook, Larry Wissel
  • Patent number: 10347494
    Abstract: A method for adjusting a threshold voltage includes depositing a strained liner on a gate structure to strain a gate dielectric. A threshold voltage of a transistor is adjusted by controlling an amount of strain in the liner to control an amount of work function (WF) modulating species that diffuse into the gate dielectric in a channel region. The liner is removed.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: July 9, 2019
    Assignee: International Business Machines Corporation
    Inventors: Takashi Ando, Mohit Bajaj, Terence B. Hook, Rajan K. Pandey, Rajesh Sathiyanarayanan
  • Patent number: 10340340
    Abstract: Semiconductor devices and methods of making the same include forming a stack of alternating layers of channel material and sacrificial material. The sacrificial material is etched away to free the layers of channel material. A gate stack is formed around the layers of channel material. At least one layer of channel material is deactivated. Source and drain regions are formed in contact with the at least one layer of active channel material.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: July 2, 2019
    Assignee: International Business Machines Corporation
    Inventors: Ruqiang Bao, Michael A. Guillorn, Terence B. Hook, Nicolas J. Loubet, Robert R. Robison, Reinaldo A. Vega, Tenko Yamashita
  • Publication number: 20190198667
    Abstract: A vertical field-effect transistor (FET) device and an input/output (IO) FET device are formed. The vertical FET device is formed in a vertical FET device area of a substrate and the IO FET device is formed in an IO FET device area of the substrate. Forming the vertical FET device and the IO FET device includes forming a plurality of first fin structures in the vertical FET device area and forming at least two second fin structures in the IO FET device area. The at least two second fin structures are separated by a distance associated with a length of a channel connecting the at least two fin structures in the IO FET device area. The length of the channel is determined based on at least one voltage for implementing the IO FET device.
    Type: Application
    Filed: December 22, 2017
    Publication date: June 27, 2019
    Inventors: Xuefeng Liu, Junli Wang, Brent A. Anderson, Terence B. Hook, Gauri Karve
  • Patent number: 10332959
    Abstract: A method for forming a semiconductor device comprises forming a fin in a bulk semiconductor substrate and depositing a first insulator layer over portions of the bulk semiconductor substrate adjacent to the fin. The method further includes removing portions of the first insulator layer to reduce a thickness of the first insulator layer and expose a sidewall of the fin. An etch stop layer is deposited on the first insulator layer. A gate stack is formed over a channel region of the fin and over portions of the etch stop layer. A portion of the bulk semiconductor substrate is removed to expose portions of the etch stop layer and the fin, and a second insulator layer is deposited over exposed portions of the fin and the etch stop layer.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: June 25, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Terence B. Hook, Joshua M. Rubin, Tenko Yamashita
  • Patent number: 10326019
    Abstract: A structure capable of effectively preventing dopant diffusion from source/drain regions into an underlying semiconductor-on-insulator (SOI) layer of fully-depleted SOI transistors with U-shaped channels is provided. By inserting a dopant diffusion barrier layer between an SOI layer of an SOI substrate and a doped extension layer from which source/drain extension regions are derived, the undesired dopant diffusion from the source/drain extension regions into the underlying SOI layer can be prevented.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: June 18, 2019
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Robert H. Dennard, Bruce B. Doris, Terence B. Hook