Patents by Inventor Terry G. Roberie

Terry G. Roberie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8715487
    Abstract: This invention relates to the composition, method of making and use of a fluidized catalytic cracking (“FCC”) catalyst that is comprised of a new Y zeolite which exhibits an exceptionally low small mesoporous peak around the 40 ? (angstrom) range as determined by nitrogen adsorption measurements. FCC catalysts made from this new zeolite exhibit improved rates of heavy oil cracking heavy oil bottoms conversions and gasoline conversions. The fluidized catalytic cracking catalysts herein are particularly useful in fluidized catalytic cracking (“FCC”) processes for conversion of heavy hydrocarbon feedstocks such as gas oils and vacuum tower bottoms.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: May 6, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Jianxin Jason Wu, William A. Wachter, Colin L. Beswick, Edward Thomas Habib, Jr., Terry G. Roberie, Ruizhong Hu
  • Publication number: 20110224068
    Abstract: This invention relates to the composition, method of making and use of a fluidized catalytic cracking (“FCC”) catalyst that is comprised of a new Y zeolite which exhibits an exceptionally low small mesoporous peak around the 40 ? (angstrom) range as determined by nitrogen adsorption measurements. FCC catalysts made from this new zeolite exhibit improved rates of heavy oil cracking heavy oil bottoms conversions and gasoline conversions. The fluidized catalytic cracking catalysts herein are particularly useful in fluidized catalytic cracking (“FCC”) processes for conversion of heavy hydrocarbon feedstocks such as gas oils and vacuum tower bottoms.
    Type: Application
    Filed: February 17, 2011
    Publication date: September 15, 2011
    Applicant: W.R. Grace & Co.-Conn.
    Inventors: Edward T. Habib, JR., Ruizhong Hu, Terry G. Roberie, Jianxin Jason Wu, William A. Wachter, Colin L. Beswick
  • Publication number: 20110220549
    Abstract: This invention relates to the composition, method of making and use of a fluidized catalytic cracking (“FCC”) catalyst that is comprised of a new Y zeolite which exhibits an exceptionally low small mesoporous peak around the 40 ? (angstrom) range as determined by nitrogen adsorption measurements. FCC catalysts made from this new zeolite exhibit improved rates of heavy oil cracking heavy oil bottoms conversions and gasoline conversions. The fluidized catalytic cracking catalysts herein are particularly useful in fluidized catalytic cracking (“FCC”) processes for conversion of heavy hydrocarbon feedstocks such as gas oils and vacuum tower bottoms.
    Type: Application
    Filed: February 17, 2011
    Publication date: September 15, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Jianxin Jason Wu, William A. Wachter, Colin L. Beswick, Edward Thomas Habib, JR., Terry G. Roberie, Ruizhong Hu
  • Patent number: 7803267
    Abstract: The sulfur content of liquid cracking products, especially the cracked gasoline, of the catalytic cracking process is reduced by the use of a sulfur reduction catalyst composition comprising a porous molecular sieve which contains a metal in an oxidation state above zero within the interior of the pore structure of the sieve as well as a cerium component which enhances the stability and sulfur reduction activity of the catalyst. The molecular sieve is normally a faujasite such as USY. The primary sulfur reduction component is normally a metal of Period 3 of the Periodic Table, preferably vanadium. The sulfur reduction catalyst may be used in the form of a separate particle additive or as a component of an integrated cracking/sulfur reduction catalyst.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: September 28, 2010
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Arthur W. Chester, Terry G. Roberie, Hye Kyung C. Timken, Michael S. Ziebarth
  • Patent number: 7507686
    Abstract: The sulfur content of liquid cracking products, especially the cracked gasoline, of the catalytic cracking process is reduced by the use of a sulfur reduction catalyst composition comprising a porous molecular sieve which contains a metal in an oxidation state above zero within the interior of the pore structure of the sieve as well as a cerium component which enhances the stability and sulfur reduction activity of the catalyst. The molecular sieve is normally a faujasite such as USY. The primary sulfur reduction component is normally a metal of Period 3 of the Periodic Table, preferably vanadium. The sulfur reduction catalyst may be used in the form of a separate particle additive or as a component of an integrated cracking/sulfur reduction catalyst.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: March 24, 2009
    Assignee: W. R. Grace & Co. - Conn.
    Inventors: Arthur W. Chester, Hye Kyung Cho Timken, Terry G. Roberie, Michael S. Ziebarth
  • Patent number: 7476638
    Abstract: The sulfur content of liquid cracking products, especially the cracked gasoline, of the catalytic cracking process is reduced by the use of a sulfur reduction additive comprising a porous molecular sieve which contains a metal in an oxidation state above zero within the interior of the pore structure of the sieve. The molecular sieve is normally a large pore size zeolite such as USY or zeolite beta or an intermediate pore size zeolite such as ZSM-5. The metal is normally a metal of Period 3 of the Periodic Table, preferably zinc or vanadium. The sulfur reduction catalyst may be used in the form of a separate particle additive or as a component of an integrated cracking/sulfur reduction catalyst.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: January 13, 2009
    Assignee: W. R. Grace & Co. - Conn.
    Inventors: Arthur W. Chester, Hye Kyung Cho Timken, Terry G. Roberie, Michael S. Ziebarth
  • Patent number: 7452839
    Abstract: The sulfur content of liquid cracking products, especially the cracked gasoline, of the catalytic cracking process is reduced by the use of a sulfur reduction catalyst composition comprising a porous molecular sieve which contains a metal in an oxidation state above zero within the interior of the pore structure of the sieve as well as a rare earth component which enhances the cracking activity of the cracking catalyst. The molecular sieve is normally a faujasite such as USY. The primary sulfur reduction component is normally a metal of Period 3 of the Periodic Table, preferably vanadium. The rare earth component preferably includes cerium which enhances the sulfur reduction activity of the catalyst. The sulfur reduction catalyst may be used in the form of a separate particle additive or as a component of an integrated cracking/sulfur reduction catalyst.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: November 18, 2008
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Wu-Cheng Cheng, Terry G. Roberie, Hye Kyung Cho Timken, Scott Kevin Purnell, Xinjin Zhao
  • Patent number: 7153413
    Abstract: The sulfur content of liquid cracking products, especially the cracked gasoline, is reduced in a catalytic cracking process employing a cracking catalyst containing a high content of vanadium. The cracking process involves introducing at least one vanadium compound into a hydrocarbon-sulfur containing feedstock to be charged to a fluid catalytic cracking reactor operating under steady state conditions and containing an equilibrium fluid cracking catalyst inventory within the reactor. The amount of sulfur in the liquid products, in particular gasoline and LCO fractions, is reduced as a result of the increased vanadium content on the equilibrium catalyst. Advantageously, sulfur reduction is achieved even in the presence of other metal contaminants, such as nickel and iron, on the equilibrium catalyst.
    Type: Grant
    Filed: July 10, 2001
    Date of Patent: December 26, 2006
    Assignee: W.R. Grace &Co.-Conn.
    Inventors: Terry G. Roberie, Ranjit Kumar, Michael S Ziebarth, Wu-Cheng Cheng, Xinjin Zhao, Nazeer Bhore
  • Patent number: 6974787
    Abstract: The sulfur content of liquid cracking products, especially the cracked gasoline, of the catalytic cracking process is reduced by the use of a sulfur reduction catalyst composition comprising a porous molecular sieve which contains a metal in an oxidation state above zero within the interior of the pore structure of the sieve as well as a cerium component which enhances the stability and sulfur reduction activity of the catalyst. The molecular sieve is normally a faujasite such as USY. The primary sulfur reduction component is normally a metal of Period 3 of the Periodic Table, preferably vanadium. The sulfur reduction catalyst may be used in the form of a separate particle additive or as a component of an integrated cracking/sulfur reduction catalyst.
    Type: Grant
    Filed: December 21, 1999
    Date of Patent: December 13, 2005
    Assignees: ExxonMobil Corporation, W. R. Grace & Co.-Conn.
    Inventors: Arthur W. Chester, Terry G. Roberie, Hye Kyung C. Timken, Michael S. Ziebarth
  • Patent number: 6923903
    Abstract: The sulfur content of liquid cracking products, especially the cracked gasoline, of the catalytic cracking process is reduced by the use of a sulfur reduction catalyst composition comprising a porous molecular sieve which contains a metal in an oxidation state above zero within the interior of the pore structure of the sieve as well as a cerium component which enhances the stability and sulfur reduction activity of the catalyst. The molecular sieve is normally a faujasite such as USY. The primary sulfur reduction component is normally a metal of Period 3 of the Periodic Table, preferably vanadium. The sulfur reduction catalyst may be used in the form of a separate particle additive or as a component of an integrated cracking/sulfur reduction catalyst.
    Type: Grant
    Filed: December 3, 2002
    Date of Patent: August 2, 2005
    Assignees: ExxonMobil Oil Corporation, W.R. Grace & Co.-Conn.
    Inventors: Arthur W. Chester, Hye Kyung Cho Timken, Terry G. Roberie, Michael S. Ziebarth
  • Patent number: 6916757
    Abstract: A catalyst composition suitable for reacting hydrocarbons, e.g., conversion processes such as fluidized catalytic cracking (FCC) of hydrocarbons, comprises attrition resistant particulate having a high level (30-85%) of stabilized zeolites having a constraint index of 1 to 12. The stabilized zeolite is bound by a phosphorous compound, alumina and optional binders wherein the alumina added to make the catalyst is about 10% by weight or less and the molar ratio of phosphorous (P2O5) to total alumina is sufficient to obtain an attrition index of about 20 or less. The composition can be used as a catalyst per se or as additive catalyst to a conventional catalyst and is especially suitable for enhancing yields of light olefins, and particularly ethylene, produced during conversion processes.
    Type: Grant
    Filed: May 20, 2002
    Date of Patent: July 12, 2005
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Michael S. Ziebarth, Terry G. Roberie, Philip S. Deitz
  • Patent number: 6852214
    Abstract: The sulfur content of liquid cracking products, especially the cracked gasoline, of the catalytic cracking process is reduced by the use of a sulfur reduction additive comprising a porous molecular sieve which contains a metal in an oxidation state above zero within the interior of the pore structure of the sieve. The molecular sieve is normally a large pore size zeolite such as USY or zeolite beta or an intermediate pore size zeolite such as ZSM-5. The metal is normally a metal of Period 4 of the Periodic Table, preferably zinc or vanadium. The sulfur reduction catalyst may be used in the form of a separate particle additive or as a component of an integrated cracking/sulfur reduction catalyst.
    Type: Grant
    Filed: August 31, 1998
    Date of Patent: February 8, 2005
    Assignees: Mobil Oil Corporation, W. R. Grace & Co.-Conn.
    Inventors: Arthur W. Chester, Hye Kyung Cho Timken, Michael S. Ziebarth, Terry G. Roberie
  • Patent number: 6846403
    Abstract: The sulfur content of liquid cracking products, especially the cracked gasoline, of the catalytic cracking process is reduced by the use of a sulfur reduction catalyst composition comprising a porous molecular sieve which contains a metal in an oxidation state above zero within the interior of the pore structure of the sieve as well as a rare earth component which enhances the cracking activity of the cracking catalyst. The molecular sieve is normally a faujasite such as USY. The primary sulfur reduction component is normally a metal of Period 4 of the Periodic Table, preferably vanadium. The rare earth component preferably includes cerium which enhances the sulfur reduction activity of the catalyst. The sulfur reduction catalyst may be used in the form of a separate particle additive or as a component of an integrated cracking/sulfur reduction catalyst.
    Type: Grant
    Filed: December 28, 1998
    Date of Patent: January 25, 2005
    Assignees: Mobil Oil Corporation, W.R. Grace & Co.-Conn.
    Inventors: Wu-Cheng Cheng, Scott Kevin Purnell, Terry G. Roberie, Hye Kyung Cho Timken, Xinjin Zhao
  • Patent number: 6797155
    Abstract: A process for catalytic cracking of a hydrocarbon feedstock comprises contacting the feedstock with a catalyst composition comprising a primary cracking component, such as zeolite Y, and a mesoporous aluminophosphate material which includes a solid aluminophosphate composition modified with at least one element selected from zirconium, cerium, lanthanum, manganese, cobalt, zinc, and vanadium. The mesoporous aluminophosphate material has a specific surface area of at least 100 m2/g, an average pore size less than or equal to 100 Å, and a pore size distribution such that at least 50% of the pores have a pore diameter less than 100 Å.
    Type: Grant
    Filed: December 21, 1999
    Date of Patent: September 28, 2004
    Assignee: ExxonMobil Research & Engineering Co.
    Inventors: Arthur Warren Chester, Frederick Earl Daugherty, Anthony Shiu lun Fung, Charles Theodore Kresge, Hye Kyung Cho Timken, James Clarke Vartuli, Ranjit Kumar, Terry G. Roberie, Michael S. Ziebarth
  • Publication number: 20040099573
    Abstract: The sulfur content of liquid cracking products, especially the cracked gasoline, is reduced in a catalytic cracking process employing a cracking catalyst containing a high content of vanadium. The cracking process involves introducing at least one vanadium compound into a hydrocarbon-sulfur containing feedstock to be charged to a fluid catalytic cracking reactor operating under steady state conditions and containing an equilibrium fluid cracking catalyst inventory within the reactor. The amount of sulfur in the liquid products, in particular gasoline and LCO fractions, is reduced as a result of the increased vanadium content on the equilibrium catalyst. Advantageously, sulfur reduction is achieved even in the presence of other metal contaminants, such as nickel and iron, on the equilibrium catalyst.
    Type: Application
    Filed: July 10, 2001
    Publication date: May 27, 2004
    Inventors: Terry G. Roberie, Ranjit Kumar, Michael S. Ziebarth, Wu-Cheng Cheng, Xinjin Zhao, Nazeer Bhore
  • Publication number: 20030089639
    Abstract: The sulfur content of liquid cracking products, especially the cracked gasoline, of the catalytic cracking process is reduced by the use of a sulfur reduction catalyst composition comprising a porous molecular sieve which contains a metal in an oxidation state above zero within the interior of the pore structure of the sieve as well as a cerium component which enhances the stability and sulfur reduction activity of the catalyst. The molecular sieve is normally a faujasite such as USY. The primary sulfur reduction component is normally a metal of Period 3 of the Periodic Table, preferably vanadium. The sulfur reduction catalyst may be used in the form of a separate particle additive or as a component of an integrated cracking/sulfur reduction catalyst.
    Type: Application
    Filed: December 3, 2002
    Publication date: May 15, 2003
    Inventors: Arthur W. Chester, Hye Kyung Cho Timken, Terry G. Roberie, Michael S. Ziebarth
  • Publication number: 20030075481
    Abstract: The sulfur content of liquid cracking products, especially the cracked gasoline, of the catalytic cracking process is reduced by the use of a sulfur reduction catalyst composition comprising a porous molecular sieve which contains a metal in an oxidation state above zero within the interior of the pore structure of the sieve as well as a cerium component which enhances the stability and sulfur reduction activity of the catalyst. The molecular sieve is normally a faujasite such as USY. The primary sulfur reduction component is normally a metal of Period 3 of the Periodic Table, preferably vanadium. The sulfur reduction catalyst may be used in the form of a separate particle additive or as a component of an integrated cracking/sulfur reduction catalyst.
    Type: Application
    Filed: December 3, 2002
    Publication date: April 24, 2003
    Inventors: Arthur W. Chester, Hye Kyung Cho Timken, Terry G. Roberie, Michael S. Ziebarth
  • Publication number: 20030047487
    Abstract: A catalyst composition suitable for reacting hydrocarbons, e.g., conversion processes such as fluidized catalytic cracking (FCC) of hydrocarbons, comprises attrition resistant particulate having a high level (30-85%) of stabilized zeolites having a constraint index of 1 to 12. The stabilized zeolite is bound by a phosphorous compound, alumina and optional binders wherein the alumina added to make the catalyst is about 10% by weight or less and the molar ratio of phosphorous (P2O5) to total alumina is sufficient to obtain an attrition index of about 20 or less. The composition can be used as a catalyst per se or as additive catalyst to a conventional catalyst and is especially suitable for enhancing yields of light olefins, and particularly ethylene, produced during conversion processes.
    Type: Application
    Filed: May 20, 2002
    Publication date: March 13, 2003
    Inventors: Michael S. Ziebarth, Terry G. Roberie, Philip S. Deitz
  • Publication number: 20030034275
    Abstract: The sulfur content of liquid cracking products, especially the cracked gasoline, of the catalytic cracking process is reduced by the use of a sulfur reduction additive comprising a non-molecular sieve support containing a high content of vanadium. Preferably, the support is alumina. The sulfur reduction catalyst is used in the form of a separate particle additive in combination with the active catalytic cracking catalyst (normally a faujasite such as zeolite Y) to process hydrocarbon feedstocks in the fluid catalytic cracking (FCC) unit to produce low-sulfur gasoline and other liquid products.
    Type: Application
    Filed: September 6, 2002
    Publication date: February 20, 2003
    Inventors: Terry G. Roberie, Ranjit Kumar, Michael S. Ziebarth, Wu-Cheng Cheng, Xinjin Zhao, Nazeer Bhore
  • Publication number: 20020179498
    Abstract: The sulfur content of liquid cracking products, especially the cracked gasoline, of the catalytic cracking process is reduced by the use of a sulfur reduction catalyst composition comprising a porous molecular sieve which contains a metal in an oxidation state above zero within the interior of the pore structure of the sieve as well as a cerium component which enhances the stability and sulfur reduction activity of the catalyst. The molecular sieve is normally a faujasite such as USY. The primary sulfur reduction component is normally a metal of Period 3 of the Periodic Table, preferably vanadium. The sulfur reduction catalyst may be used in the form of a separate particle additive or as a component of an integrated cracking/sulfur reduction catalyst.
    Type: Application
    Filed: December 21, 1999
    Publication date: December 5, 2002
    Inventors: Arthur W. Chester, Terry G. Roberie, Hye Kyung C. Timken, Michael S. Ziebarth