Patents by Inventor Terry G. Roberie

Terry G. Roberie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6482315
    Abstract: The sulfur content of liquid cracking products, especially the cracked gasoline, of the catalytic cracking process is reduced by the use of a sulfur reduction additive comprising a non-molecular sieve support containing a high content of vanadium. Preferably, the support is alumina. The sulfur reduction catalyst is used in the form of a separate particle additive in combination with the active catalytic cracking catalyst (normally a faujasite such as zeolite Y) to process hydrocarbon feedstocks in the fluid catalytic cracking (FCC) unit to produce low-sulfur gasoline and other liquid products.
    Type: Grant
    Filed: August 28, 2000
    Date of Patent: November 19, 2002
    Assignee: W.R. Grace & Co.-Conn.
    Inventors: Terry G. Roberie, Ranjit Kumar, Michael Scott Ziebarth, Wu-Cheng Cheng, Xinjin Zhao, Nazeer Bhore
  • Publication number: 20020153282
    Abstract: The sulfur content of liquid cracking products, especially the cracked gasoline, of the catalytic cracking process is reduced by the use of a sulfur reduction catalyst composition comprising a porous molecular sieve which contains a metal in an oxidation state above zero within the interior of the pore structure of the sieve as well as a rare earth component which enhances the cracking activity of the cracking catalyst. The molecular sieve is normally a faujasite such as USY. The primary sulfur reduction component is normally a metal of Period 3 of the Periodic Table, preferably vanadium. The rare earth component preferably includes cerium which enhances the sulfur reduction activity of the catalyst. The sulfur reduction catalyst may be used in the form of a separate particle additive or as a component of an integrated cracking/sulfur reduction catalyst.
    Type: Application
    Filed: December 28, 1998
    Publication date: October 24, 2002
    Inventors: W.C. CHENG, SCOTT K. PURNELL, TERRY G. ROBERIE, HYE-KYUNG C. TIMKEN, XINJIN ZHAO
  • Publication number: 20020153283
    Abstract: The sulfur content of liquid cracking products, especially the cracked gasoline, of the catalytic cracking process is reduced by the use of a sulfur reduction catalyst composition comprising a porous molecular sieve which contains a metal in an oxidation state above zero within the interior of the pore structure of the sieve as well as a cerium component which enhances the stability and sulfur reduction activity of the catalyst. The molecular sieve is normally a faujasite such as USY. The primary sulfur reduction component is normally a metal of Period 3 of the Periodic Table, preferably vanadium. The sulfur reduction catalyst may be used in the form of a separate particle additive or as a component of an integrated cracking/sulfur reduction catalyst.
    Type: Application
    Filed: December 28, 1998
    Publication date: October 24, 2002
    Inventors: ARTHUR W CHESTER, HYE KYUNG CHO TIMKEN, TERRY G ROBERIE, MICHAEL S ZIEBARTH
  • Publication number: 20020049133
    Abstract: A catalyst composition suitable for reacting hydrocarbons, e.g., conversion processes such as fluidized catalytic cracking (FCC) of hydrocarbons, comprises attrition resistant particulate having a high level (30-85%) of stabilized zeolites having a constraint index of 1 to 12. The stabilized zeolite is bound by a phosphorous compound, alumina and optional binders wherein the alumina added to make the catalyst is about 10% by weight or less and the molar ratio of phosphorous (P2O5) to total alumina is sufficient to obtain an attrition index of about 20 or less. The composition can be used as a catalyst per se or as additive catalyst to a conventional catalyst and is especially suitable for enhancing yields of light olefins, and particularly ethylene, produced during conversion processes.
    Type: Application
    Filed: March 2, 1999
    Publication date: April 25, 2002
    Inventors: MICHAEL S. ZIEBARTH, TERRY G. ROBERIE, PHILIP S. DEITZ
  • Patent number: 5626828
    Abstract: A synthetic zeolite, designated zeolite GZS-11, is made having a molar composition expressed by the formula:[x M.sub.2/n O+(1.0.+-.0.2-x)R.sub.2/n O]:Y.sub.2 O.sub.3 :y XO.sub.2 :w H.sub.2 Owhere M is an inorganic cation of valance n, R is an organic cation of valence n, "x" has a value of less than 1.0, Y is one or more of +3 valence elements, such as aluminum, boron, gallium, iron, chromium, vanadium, molybdenum, or manganese, X is one or more of +4 valence elements, such as silicon, germanium, or titanium, "y" has a value of between 6 to 25, "w" has a value of up to 4 depending upon the degree of hydration of the zeolite, and having an X-ray diffraction pattern of the as-synthesized zeolite substantially as in Table 1. The method for making the low ratio of XO.sub.2 /Y.sub.2 O.sub.3 such as SiO.sub.2 /Al.sub.2 O.sub.3 is achieved by adjusting the synthesis mixture composition during the aging stage through the addition of one or more of the solutions containing the reactive sources of zeolitic components.
    Type: Grant
    Filed: October 18, 1994
    Date of Patent: May 6, 1997
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Jianxin Wu, Robert R. Gatte, Terry G. Roberie
  • Patent number: 5582713
    Abstract: A synthetic zeolite, designated zeolite GZS-11, is made having a molar composition expressed by the formula:[x M.sub.2/n O+(1.0.+-.0.2-x)R.sub.2/n O]:Y.sub.2 O.sub.3 :y XO.sub.2 :wH.sub.2 Owhere M is an inorganic cation of valance n, R is an organic cation of valence n, "x" has a value of less than 1.0, Y is one or more of+3 valence elements, such as aluminum, boron, gallium, iron, chromium, vanadium, molybdenum, or manganese, X is one or more of+4 valence elements, such as silicon, germanium, or titanium, "y" has a value of between 6 to 25, "w" has a value of up to 4 depending upon the degree of hydration of the zeolite, and having an X-ray diffraction pattern of the assynthesized zeolite substantially as in Table 1. The method for making the low ratio of XO.sub.2 /Y.sub.2 O.sub.3 such as SiO.sub.2 /Al.sub.2 O.sub.3 is achieved by adjusting the synthesis mixture composition during the aging stage through the addition of one or more of the solutions containing the reactive sources of zeolitic components.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: December 10, 1996
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Jianxin Wu, Robert R. Gatte, Terry G. Roberie
  • Patent number: 5389358
    Abstract: A synthetic zeolite, designated zeolite GZS-11, is made having a molar composition expressed by the formula:[x M.sub.2/n O+(1.0.+-.0.2-x)R.sub.2/n O]:Y.sub.2 O.sub.3 :y XO.sub.2 :w H.sub.2 Owhere M is an inorganic cation of valance n, R is an organic cation of valence n, "x" has a value of less than 1.0, Y is one or more of +3 valence elements, such as aluminum, boron, gallium, iron, chromium, vanadium, molybdenum, or manganese, X is one or more of +4 valence elements, such as silicon, germanium, or titanium, "y" has a value of between 6 to 25, "w" has a value of up to 4 depending upon the degree of hydration of the zeolite, and having an X-ray diffraction pattern of the assynthesized zeolite substantially as in Table 1. The method for making the low ratio of XO.sub.2 /Y.sub.2 O.sub.3 such as SiO.sub.2 /Al.sub.2 O.sub.3 is achieved by adjusting the synthesis mixture composition during the aging stage through the addition of one or more of the solutions containing the reactive sources of zeolitic components.
    Type: Grant
    Filed: July 16, 1993
    Date of Patent: February 14, 1995
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Jianxin Wu, Robert R. Gatte, Terry G. Roberie
  • Patent number: 5312792
    Abstract: Crystalline aluminosilicate zeolite Y which contains phosphorus and its use in the preparation of hydrocarbon conversion catalysts.
    Type: Grant
    Filed: July 20, 1992
    Date of Patent: May 17, 1994
    Assignee: W. R. Grace & Co.-Conn.
    Inventor: Terry G. Roberie
  • Patent number: 5286369
    Abstract: Catalyst compositions are described which comprise crystalline molecular sieve zeolites and an aluminum phosphate component having a surface area of less than about 50 m.sup.2 /g and a high degree of attrition resistance. The catalysts are particularly effective for the catalytic cracking of high molecular hydrocarbon feedstocks to obtain enhanced yields of C.sub.3 and C.sub.4 olefins such as isobutylene.
    Type: Grant
    Filed: October 26, 1992
    Date of Patent: February 15, 1994
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Terry G. Roberie, John F. Terbot, II
  • Patent number: 5194412
    Abstract: Catalyst compositions are described which comprise crystalline molecular sieve zeolites and an aluminum phosphate component having a surface area of less than about 50 m.sup.2 /g and a high degree of attrition resistance. The catalysts are particularly effective for the catalytic cracking of high molecular hydrocarbon feedstocks to obtain enhanced yields of C.sub.3 and C.sub.4 olefins such as isobutylene.
    Type: Grant
    Filed: January 22, 1991
    Date of Patent: March 16, 1993
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Terry G. Roberie, John F. Terbot, II