Patents by Inventor Thomas A. Nondahl

Thomas A. Nondahl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130286704
    Abstract: Cascade H-Bridge inverters and carrier-based level shift pulse width modulation techniques are presented for generating inverter stage switching control signals, in which carrier waveform levels are selectively shifted to control THD and to mitigate power distribution imbalances within multilevel inverter elements.
    Type: Application
    Filed: April 27, 2012
    Publication date: October 31, 2013
    Applicant: ROCKWELL AUTOMATION TECHNOLOGIES, INC.
    Inventors: Jingbo Liu, Thomas Nondahl, Zhongyuan Cheng, Navid Zargari
  • Patent number: 8547050
    Abstract: Systems, methods, and devices are disclosed, including an induction-motor controller having a phase path; a solid-state switch interposed on the phase path; and a controller coupled to the solid-state switch. In certain embodiments, the controller is configured to switch the solid-state switch so that the solid-state switch is conductive during a conduction angle of a cycle of an incoming AC power waveform conveyed by the phase path, calculate the conduction angle based on a generally sinusoidal reference value that has a frequency lower than a frequency of the incoming AC power waveform, and adjust the generally sinusoidal reference value based on a value indicative of flux in a load coupled to the phase path.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: October 1, 2013
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Haihui Lu, David M. Messersmith, Thomas A. Nondahl
  • Patent number: 8497655
    Abstract: The present invention provides a simple, robust, and universal position observer for use with sensorless synchronous machines. The observer may be implemented using an equivalent EMF model of a synchronous machine or, alternately, using a sliding mode controller based on the equivalent EMF model of the synchronous machine. The observer may be used on any type of synchronous machine, including salient or non-salient pole machines such as a permanent magnet, interior permanent magnet, wound rotor, or reluctance synchronous machine. The observer provides low sensitivity to parameter variations and disturbances or transient conditions in the machine. In addition, no knowledge of speed is required as an input to the observer and an estimated position may be calculated using a subset of the machine parameters.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: July 30, 2013
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Jingbo Liu, Semyon Royak, Mark M. Harbaugh, Thomas A. Nondahl, Peter B. Schmidt
  • Patent number: 8330405
    Abstract: The present invention provides an improved current regulator for PWM based drives for electric motors. The invention provides compensation for the rotor position signal for delays introduced due to the PWM algorithm and for digital sampling present in such a drive. Current regulator commonly operate in a two-phase reference frame, requiring forward and reverse coordinate transformations between the physical current values and the two-phase reference frame variables. The present invention provides an improved compensation in the forward transformation by determining the phase lag between the commanded voltage reference and the output voltage reference and by further compensating the forward transformation for errors introduced due to sampling the current either at different sampling instances than the rotor position or at multiple sampling instances during a carrier period.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: December 11, 2012
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Semyon Royak, Mark M. Harbaugh, Thomas A. Nondahl, Jingbo Liu, Peter B. Schmidt, Robert J. Breitzmann
  • Publication number: 20120268050
    Abstract: The present invention provides a simple, robust, and universal position observer for use with sensorless synchronous machines. The observer may be implemented using an equivalent EMF model of a synchronous machine or, alternately, using a sliding mode controller based on the equivalent EMF model of the synchronous machine. The observer may be used on any type of synchronous machine, including salient or non-salient pole machines such as a permanent magnet, interior permanent magnet, wound rotor, or reluctance synchronous machine. The observer provides low sensitivity to parameter variations and disturbances or transient conditions in the machine. In addition, no knowledge of speed is required as an input to the observer and an estimated position may be calculated using a subset of the machine parameters.
    Type: Application
    Filed: June 26, 2012
    Publication date: October 25, 2012
    Inventors: Jingbo Liu, Semyon Royak, Mark M. Harbaugh, Thomas A. Nondahl, Peter B. Schmidt
  • Publication number: 20120223668
    Abstract: Systems, methods, and devices are disclosed, including an induction-motor controller having a phase path; a solid-state switch interposed on the phase path; and a controller coupled to the solid-state switch. In certain embodiments, the controller is configured to switch the solid-state switch so that the solid-state switch is conductive during a conduction angle of a cycle of an incoming AC power waveform conveyed by the phase path, calculate the conduction angle based on a generally sinusoidal reference value that has a frequency lower than a frequency of the incoming AC power waveform, and adjust the generally sinusoidal reference value based on a value indicative of flux in a load coupled to the phase path.
    Type: Application
    Filed: May 17, 2012
    Publication date: September 6, 2012
    Applicant: ROCKWELL AUTOMATION TECHNOLOGIES, INC.
    Inventors: Haihui Lu, David M. Messersmith, Thomas A. Nondahl
  • Patent number: 8228013
    Abstract: A method and apparatus for determining electrical parameters for commissioning a sensor-less permanent magnet synchronous machine uses knowledge of the rotor position to apply balanced pulses along the rotor magnet axis and perpendicular to the rotor magnet axis allowing measurement of q- and d-inductance at multiple current levels without substantial rotor movement.
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: July 24, 2012
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Jingbo Liu, Mark M. Harbaugh, Thomas A Nondahl, Peter B. Schmidt, Semyon Royak
  • Patent number: 8203304
    Abstract: Systems, methods, and devices are disclosed, including an induction-motor controller having a phase path; a solid-state switch interposed on the phase path; and a controller coupled to the solid-state switch. In certain embodiments, the controller is configured to switch the solid-state switch so that the solid-state switch is conductive during a conduction angle of a cycle of an incoming AC power waveform conveyed by the phase path, calculate the conduction angle based on a generally sinusoidal reference value that has a frequency lower than a frequency of the incoming AC power waveform, and adjust the generally sinusoidal reference value based on a value indicative of flux in a load coupled to the phase path.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: June 19, 2012
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Haihui Lu, David M. Messersmith, Thomas A. Nondahl
  • Patent number: 8159168
    Abstract: A method for estimating a rotor position in an electrical machine is provided. The method is applicable to electrical machines that have magnetic saliency. The method includes extracting the rotor position from a demodulated output signal generated in response to an injected high frequency carrier signal and determining a position error compensation based upon a demodulation delay and a velocity or rotational frequency of the electrical machine. The method also includes estimating the rotor position by applying the position error compensation to the extracted rotor position.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: April 17, 2012
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Jingbo Liu, Thomas Nondahl, Peter B. Schmidt, Semyon Royak, Mark H. Harbaugh
  • Patent number: 7944164
    Abstract: A method and apparatus for determining rotor position in a stationary rotor of a sensor-less permanent magnet synchronous machine that employs a rotating magnetic field to identify a magnetic axis of the stator without a magnetic direction and then determines magnetic direction by applying pulses along the magnet axis in two polarities.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: May 17, 2011
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Jingbo Liu, Thomas Nondahl, Peter Schmidt, Semyon Royak, Mark Harbaugh
  • Publication number: 20110102012
    Abstract: A method of estimating stator resistance of an induction motor is provided. The method includes applying voltage pulses through two phase paths of the motor for a plurality of electrical cycles to inject current in the motor, wherein the voltage pulses are applied until rotor flux of the motor is substantially stabilized and measuring stator voltage and stator current in response to the applied voltage pulses for each of the plurality of electrical cycles. The method also includes calculating the stator resistance based upon the measured stator voltages and the stator currents.
    Type: Application
    Filed: November 3, 2009
    Publication date: May 5, 2011
    Applicant: Rockwell Automation Technologies, Inc.
    Inventors: David M. Messersmith, Douglas J. Bader, Haihui Lu, Thomas A. Nondahl, Zhenhuan Yuan
  • Patent number: 7915852
    Abstract: The invention includes a motor controller and method for controlling a permanent magnet motor. In accordance with one aspect of the present technique, a permanent magnet motor is controlled by, among other things, receiving a torque command, determining a normalized torque command by normalizing the torque command to a characteristic current of the motor, determining a normalized maximum available voltage, determining an inductance ratio of the motor, and determining a direct-axis current based upon the normalized torque command, the normalized maximum available voltage, and the inductance ratio of the motor.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: March 29, 2011
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Semyon Royak, Mark M. Harbaugh, Robert J. Breitzmann, Thomas A. Nondahl, Peter B. Schmidt, Jingbo Liu
  • Patent number: 7868581
    Abstract: An induction motor controller that may include three phase paths leading from a power input to a power output, a solid-state switching device interposed between the power input and the power output on each of the three phase paths, a voltage sensor coupled to two of the phase paths between the solid-state switching device and the power input, a current sensor on one of the phase paths, a processor communicatively coupled to the voltage sensor, the current sensor, and the solid state switching device; and a memory coupled to the processor. The processor may be configured to calculate a motor parameter based on a signal from the voltage sensor and a signal from the current sensor and store the calculated motor parameter in memory.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: January 11, 2011
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Wei Qian, Haihui Lu, Thomas A. Nondahl
  • Publication number: 20100320948
    Abstract: The present invention provides an improved current regulator for PWM based drives for electric motors. The invention provides compensation for the rotor position signal for delays introduced due to the PWM algorithm and for digital sampling present in such a drive. Current regulator commonly operate in a two-phase reference frame, requiring forward and reverse coordinate transformations between the physical current values and the two-phase reference frame variables. The present invention provides an improved compensation in the forward transformation by determining the phase lag between the commanded voltage reference and the output voltage reference and by further compensating the forward transformation for errors introduced due to sampling the current either at different sampling instances than the rotor position or at multiple sampling instances during a carrier period.
    Type: Application
    Filed: June 18, 2009
    Publication date: December 23, 2010
    Inventors: Semyon Royak, Mark M. Harbaugh, Thomas A. Nondahl, Jingbo Liu, Peter B. Schmidt, Robert J. Breitzmann
  • Publication number: 20100301790
    Abstract: A method for estimating a rotor position in an electrical machine is provided. The method is applicable to electrical machines that have magnetic saliency. The method includes extracting the rotor position from a demodulated output signal generated in response to an injected high frequency carrier signal and determining a position error compensation based upon a demodulation delay and a velocity or rotational frequency of the electrical machine. The method also includes estimating the rotor position by applying the position error compensation to the extracted rotor position.
    Type: Application
    Filed: May 29, 2009
    Publication date: December 2, 2010
    Applicant: Rockwell Automation Technologies, Inc.
    Inventors: Jingbo Liu, Thomas Nondahl, Peter B. Schmidt, Semyon Royak, Mark M. Harbaugh
  • Patent number: 7701165
    Abstract: An induction motor controller that may include three phase paths leading from a power input to a power output, a solid-state switching device interposed between the power input and the power output on each of the three phase paths, a voltage sensor coupled to two of the phase paths between the solid-state switching device and the power output, a current sensor on one of the phase paths, a processor communicatively coupled to the voltage sensor, the current sensor, and the solid state switching device; and a memory coupled to the processor. The processor may be configured to calculate a motor parameter based on a signal from the voltage sensor and a signal from the current sensor and store the calculated motor parameter in memory.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: April 20, 2010
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Wei Quian, Haihui Lu, Thomas A. Nondahl
  • Publication number: 20100060210
    Abstract: A method and apparatus for determining electrical parameters for commissioning a sensor-less permanent magnet synchronous machine uses knowledge of the rotor position to apply balanced pulses along the rotor magnet axis and perpendicular to the rotor magnet axis allowing measurement of q- and d-inductance at multiple current levels without substantial rotor movement.
    Type: Application
    Filed: September 10, 2008
    Publication date: March 11, 2010
    Inventors: Jingbo Liu, Mark M. Harbaugh, Thomas A. Nondahl, Peter B. Schmidt, Semyon Royak
  • Patent number: 7672096
    Abstract: An improved switching apparatus and method are disclosed. In at least some embodiments, the apparatus includes first and second ports, a first switching device such as a contactor coupled between the ports, and a second switching device coupled in parallel with the contactor between the ports, where the second switching device can be or include a solid-state semiconductor device. The second switching device is operated to become conductive at a first time prior to a second time when the contactor switches between a conductive state and a non-conductive state, and remains conductive up to a third time subsequent to the second time. In at least some further embodiments, the apparatus also includes one or both of a voltage sensing capability and a current sensing capability and switches the second switching device to become conductive based upon voltage and/or current information.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: March 2, 2010
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: David M. Messersmith, Thomas A. Nondahl
  • Publication number: 20100026223
    Abstract: A method and apparatus for determining rotor position in a stationary rotor of a sensor-less permanent magnet synchronous machine that employs a rotating magnetic field to identify a magnetic axis of the stator without a magnetic direction and then determines magnetic direction by applying pulses along the magnet axis in two polarities.
    Type: Application
    Filed: July 31, 2008
    Publication date: February 4, 2010
    Inventors: Jingbo Liu, Thomas Nondahl, Peter Schmidt, Semyon Royak, Mark Harbaugh
  • Patent number: 7609014
    Abstract: A system and method for controlling any of a variety of permanent magnet motors includes normalizing motor parameters with respect to demagnetization current of a motor and developing a torque-per-current relationship using the normalized motor parameters at approximately maximum torque. Using the developed torque-per-current relationship, it is possible to control any of a variety of permanent magnet motors without the need for extensive configuration of a motor control unit for a specific motor.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: October 27, 2009
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Semyon Royak, Jingbo Liu, Peter B. Schmidt, Thomas A. Nondahl, Mark Melvin Harbaugh, Robert John Breitzman