Patents by Inventor Thomas A. Wassick

Thomas A. Wassick has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9477568
    Abstract: A mechanism is provided for determining a modeled age of a set of interconnect groups in a set of cores in a set of multi-core processors. For each interconnect group in the set of interconnect groups in the set of cores on the set of multi-core processors, a determination is made of a current modeled age of the interconnect group. A determination is then made as to whether at least one current modeled age of the interconnect group for the set of interconnect groups is greater than an end-of-life value. Responsive to at least one current modeled age of the interconnect group being greater than the end-of-life value, an indication to take corrective action with the at least one associated interconnect group is sent.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: October 25, 2016
    Assignee: International Business Machines Corporation
    Inventors: Malcolm S. Allen-Ware, Jon A. Casey, Sungjun Chun, Alan J. Drake, Charles R. Lefurgy, Karthick Rajamani, Jeonghee Shin, Thomas A. Wassick, Victor Zyuban
  • Publication number: 20160307860
    Abstract: A three dimensional multi-die package includes a first die and second die. The first die includes a contact attached to solder. The second die is thinned by adhesively attaching a handler to a top side of the second die and thinning a bottom side of the second die. The second die includes a multilayer contact of layered metallurgy that inhibits transfer of adhesive thereto. The layered metallurgy includes at least one layer that is wettable to the solder. The multilayer contact may include a Nickel layer, a Copper layer upon the Nickel layer, and a Nickel-Iron layer upon the Copper layer. The multilayer contact may also include a Nickel layer, a Copper-Tin layer upon the Nickel layer, and a Tin layer upon the Copper-Tin layer.
    Type: Application
    Filed: June 24, 2016
    Publication date: October 20, 2016
    Inventors: Charles L. Arvin, Harry D. Cox, Eric D. Perfecto, Thomas A. Wassick
  • Patent number: 9396991
    Abstract: A three dimensional multi-die package includes a first die and second die. The first die includes a contact attached to solder. The second die is thinned by adhesively attaching a handler to a top side of the second die and thinning a bottom side of the second die. The second die includes a multilayer contact of layered metallurgy that inhibits transfer of adhesive thereto. The layered metallurgy includes at least one layer that is wettable to the solder. The multilayer contact may include a Nickel layer, a Copper layer upon the Nickel layer, and a Nickel-Iron layer upon the Copper layer. The multilayer contact may also include a Nickel layer, a Copper-Tin layer upon the Nickel layer, and a Tin layer upon the Copper-Tin layer.
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: July 19, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Charles L. Arvin, Harry D. Cox, Eric D. Perfecto, Thomas A. Wassick
  • Patent number: 9379007
    Abstract: Embodiments of the invention include a lead-free solder interconnect structure and methods for making a lead-free interconnect structure. The structure includes a semiconductor substrate having a last metal layer, a copper pedestal attached to the last metal layer, a barrier layer attached to the copper pedestal, a barrier protection layer attached to the barrier layer, and a lead-free solder layer contacting at least one side of the copper pedestal.
    Type: Grant
    Filed: May 1, 2013
    Date of Patent: June 28, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Charles L. Arvin, Kenneth Bird, Charles C. Goldsmith, Sung K. Kang, Minhua Lu, Clare J. McCarthy, Eric D. Perfecto, Srinivasa S. N. Reddy, Krystyna W. Semkow, Thomas A. Wassick
  • Publication number: 20160181215
    Abstract: Wiring structures, methods for providing a wiring structure, and methods for distributing currents with a wiring structure from one or more through-substrate vias to multiple bumps. A first current is directed from a first through-substrate via of a first electrical resistance through a first connection line to a first bump and directing a second current from the first through-substrate via through a second connection line of a second electrical resistance to a second bump. The first connection line has a first length relative to a first position of the first bump and a first cross-sectional area, the second connection line has a second length relative to a first position of the second bump and a second cross-sectional area, the second length is different from the first length, and the second cross-sectional area is different from the first cross-sectional area.
    Type: Application
    Filed: December 19, 2014
    Publication date: June 23, 2016
    Inventors: Timothy D. Sullivan, Thomas A. Wassick
  • Publication number: 20160056072
    Abstract: A three dimensional multi-die package includes a first die and second die. The first die includes a contact attached to solder. The second die is thinned by adhesively attaching a handler to a top side of the second die and thinning a bottom side of the second die. The second die includes a multilayer contact of layered metallurgy that inhibits transfer of adhesive thereto. The layered metallurgy includes at least one layer that is wettable to the solder. The multilayer contact may include a Nickel layer, a Copper layer upon the Nickel layer, and a Nickel-Iron layer upon the Copper layer. The multilayer contact may also include a Nickel layer, a Copper-Tin layer upon the Nickel layer, and a Tin layer upon the Copper-Tin layer.
    Type: Application
    Filed: August 25, 2014
    Publication date: February 25, 2016
    Inventors: Charles L. Arvin, Harry D. Cox, Eric D. Perfecto, Thomas A. Wassick
  • Publication number: 20150333025
    Abstract: The present invention relates generally to and more particularly, to a method of fabricating a pillar interconnect structure with non-wettable sidewalls and the resulting structure. More specifically, the present invention may include exposing only the sidewalls of a pillar to an organic material that reacts with metal of the pillar to form an organo-metallic layer on sidewalls of the pillar. The organo-metallic layer may prevent solder from wetting on the sidewalls of the pillar during subsequent bonding/reflow processes.
    Type: Application
    Filed: May 15, 2014
    Publication date: November 19, 2015
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Charles L. Arvin, Brian M. Erwin, Eric D. Perfecto, Wolfgang Sauter, Thomas A. Wassick
  • Patent number: 9190376
    Abstract: The present invention relates generally to and more particularly, to a method of fabricating a pillar interconnect structure with non-wettable sidewalls and the resulting structure. More specifically, the present invention may include exposing only the sidewalls of a pillar to an organic material that reacts with metal of the pillar to form an organo-metallic layer on sidewalls of the pillar. The organo-metallic layer may prevent solder from wetting on the sidewalls of the pillar during subsequent bonding/reflow processes.
    Type: Grant
    Filed: May 15, 2014
    Date of Patent: November 17, 2015
    Assignee: International Business Machines Corporation
    Inventors: Charles L. Arvin, Brian M. Erwin, Eric D. Perfecto, Wolfgang Sauter, Thomas A. Wassick
  • Patent number: 9142501
    Abstract: An interconnect structure that includes a substrate having an electrical component present therein, and a under-bump metallurgy (UBM) stack that is present in contact with a contact pad to the electrical component that is present in the substrate. The UBM stack includes a metallic adhesion layer that is direct contact with the contact pad to the electrical component, a copper (Cu) seed layer that is in direct contact with the metallic adhesion layer layer, a first nickel (Ni) barrier layer that is present in direct contact with copper (Cu) seed layer, and a layered structure of at least one copper (Cu) conductor layer and at least one second nickel (Ni) barrier layer present on the first nickel (Ni) barrier layer. A solder ball may be present on second nickel (Ni) barrier layer.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: September 22, 2015
    Assignee: International Business Machines Corporation
    Inventors: Charles L. Arvin, Minhua Lu, Eric D. Perfecto, David J. Russell, Wolfgang Sauter, Krystyna Semkow, Thomas A. Wassick
  • Patent number: 9084378
    Abstract: An interconnect structure that includes a substrate having an electrical component present therein, and a under-bump metallurgy (UBM) stack that is present in contact with a contact pad to the electrical component that is present in the substrate. The UBM stack includes a metallic adhesion layer that is direct contact with the contact pad to the electrical component, a copper (Cu) seed layer that is in direct contact with the metallic adhesion layer, a first nickel (Ni) barrier layer that is present in direct contact with copper (Cu) seed layer, and a layered structure of at least one copper (Cu) conductor layer and at least one second nickel (Ni) barrier layer present on the first nickel (Ni) barrier layer. A solder ball may be present on second nickel (Ni) barrier layer.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: July 14, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Charles L. Arvin, Minhua Lu, Eric D. Perfecto, Krystyna W. Semkow, Thomas A. Wassick
  • Publication number: 20150094995
    Abstract: A mechanism is provided for determining a modeled age of a set of interconnect groups in a set of cores in a set of multi-core processors. For each interconnect group in the set of interconnect groups in the set of cores on the set of multi-core processors, a determination is made of a current modeled age of the interconnect group. A determination is then made as to whether at least one current modeled age of the interconnect group for the set of interconnect groups is greater than an end-of-life value. Responsive to at least one current modeled age of the interconnect group being greater than the end-of-life value, an indication to take corrective action with the at least one associated interconnect group is sent.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 2, 2015
    Applicant: International Business Machines Corporation
    Inventors: Malcolm S. Allen-Ware, Jon A. Casey, Sungjun Chun, Alan J. Drake, Charles R. Lefurgy, Karthick Rajamani, Jeonghee Shin, Thomas A. Wassick, Victor Zyuban
  • Publication number: 20140339699
    Abstract: An interconnect structure that includes a substrate having an electrical component present therein, and a under-bump metallurgy (UBM) stack that is present in contact with a contact pad to the electrical component that is present in the substrate. The UBM stack includes a metallic adhesion layer that is direct contact with the contact pad to the electrical component, a copper (Cu) seed layer that is in direct contact with the metallic adhesion layer layer, a first nickel (Ni) barrier layer that is present in direct contact with copper (Cu) seed layer, and a layered structure of at least one copper (Cu) conductor layer and at least one second nickel (Ni) barrier layer present on the first nickel (Ni) barrier layer. A solder ball may be present on second nickel (Ni) barrier layer.
    Type: Application
    Filed: July 31, 2014
    Publication date: November 20, 2014
    Applicant: International Business Machines Corporation
    Inventors: Charles L. Arvin, Minhua Lu, Eric D. Perfecto, David J. Russell, Wolfgang Sauter, Krystyna W. Semkow, Thomas A. Wassick
  • Publication number: 20140262458
    Abstract: An interconnect structure that includes a substrate having an electrical component present therein, and a under-bump metallurgy (UBM) stack that is present in contact with a contact pad to the electrical component that is present in the substrate. The UBM stack includes a metallic adhesion layer that is direct contact with the contact pad to the electrical component, a copper (Cu) seed layer that is in direct contact with the metallic adhesion layer, a first nickel (Ni) barrier layer that is present in direct contact with copper (Cu) seed layer, and a layered structure of at least one copper (Cu) conductor layer and at least one second nickel (Ni) barrier layer present on the first nickel (Ni) barrier layer. A solder ball may be present on second nickel (Ni) barrier layer.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: International Business Machines Corporation
    Inventors: Charles L. Arvin, Minhua Lu, Eric D. Perfecto, Krystyna W. Semkow, Thomas A. Wassick
  • Patent number: 8674506
    Abstract: Structures and methods to reduce maximum current density in a solder ball are disclosed. A method includes forming a contact pad in a last wiring level and forming a plurality of wires of the contact pad extending from side edges of the contact pad to respective ones of a plurality of vias. Each one of the plurality of wires has substantially the same electrical resistance.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: March 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Raschid J. Bezama, Timothy H. Daubenspeck, Gary LaFontant, Ian D. Melville, Ekta Misra, George J. Scott, Krystyna W. Semkow, Timothy D. Sullivan, Robin A. Susko, Thomas A. Wassick, Xiaojin Wei, Steven L. Wright
  • Patent number: 8650512
    Abstract: Computer-implemented methods are disclosed for providing an elastic modulus map of an integrated circuit (IC) chip of a chip/device package, for identifying a probable failure site of the chip/device package from the elastic modulus map of the IC chip, for modifying a connector footprint of the chip/device package based on identifying a probable failure site from the elastic modulus map of the IC chip, and for modifying the IC chip based on identifying a probable failure from the elastic modulus map of the IC chip. Each layer of the IC chip may be mapped, and each grid shape of the mapped layers may comprise a metal area and a dielectric area. Grid shapes from each layer of the IC are vertically aligned to provide a combined spring constant for each grid shape, which are then mapped onto the elastic modulus map to identify possible failure sites in the chip/device package.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: February 11, 2014
    Assignee: International Business Machines Corporation
    Inventors: Timothy H. Daubenspeck, Mark C. H. Lamorey, Xiao Hu Liu, Thomas M. Shaw, Thomas A. Wassick
  • Publication number: 20130252418
    Abstract: Embodiments of the invention include a lead-free solder interconnect structure and methods for making a lead-free interconnect structure. The structure includes a semiconductor substrate having a last metal layer, a copper pedestal attached to the last metal layer, a barrier layer attached to the copper pedestal, a barrier protection layer attached to the barrier layer, and a lead-free solder layer contacting at least one side of the copper pedestal.
    Type: Application
    Filed: May 1, 2013
    Publication date: September 26, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: CHARLES L. ARVIN, KENNETH BIRD, CHARLES C. GOLDSMITH, SUNG K. KANG, MINHUA LU, CLARE J. MCCARTHY, ERIC D. PERFECTO, SRINIVASA S.N. REDDY, KRYSTYNA W. SEMKOW, THOMAS A. WASSICK
  • Publication number: 20130234329
    Abstract: Structures and methods to reduce maximum current density in a solder ball are disclosed. A method includes forming a contact pad in a last wiring level and forming a plurality of wires of the contact pad extending from side edges of the contact pad to respective ones of a plurality of vias. Each one of the plurality of wires has substantially the same electrical resistance.
    Type: Application
    Filed: April 30, 2013
    Publication date: September 12, 2013
    Applicant: Intetnational Business Machines Corporation
    Inventors: Raschid J. BEZAMA, Timothy H. DAUBENSPECK, Gary LaFONTANT, Ian D. MELVILLE, Ekta MISRA, George J. SCOTT, Krystyna W. SEMKOW, Timothy D. SULLIVAN, Robin A. SUSKO, Thomas A. WASSICK, Xiaojin WEI, Steven L. WRIGHT
  • Patent number: 8487447
    Abstract: A semiconductor structure which includes a plurality of stacked semiconductor chips in a three dimensional configuration. There is a first semiconductor chip in contact with a second semiconductor chip. The first semiconductor chip includes a through silicon via (TSV) extending through the first semiconductor chip; an electrically conducting pad at a surface of the first semiconductor chip, the TSV terminating in contact at a first side of the electrically conducting pad; a passivation layer covering the electrically conducting pad, the passivation layer having a plurality of openings; and a plurality of electrically conducting structures formed in the plurality of openings and in contact with a second side of the electrically conducting pad, the contact of the plurality of electrically conducting structures with the electrically conducting pad being offset with respect to the contact of the TSV with the electrically conducting pad.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: July 16, 2013
    Assignee: International Business Machines Corporation
    Inventors: Mario J. Interrante, Gary LaFontant, Michael J. Shapiro, Thomas A. Wassick, Bucknell C. Webb
  • Patent number: 8446006
    Abstract: Structures and methods to reduce maximum current density in a solder ball are disclosed. A method includes forming a contact pad in a last wiring level and forming a plurality of wires of the contact pad extending from side edges of the contact pad to respective ones of a plurality of vias. Each one of the plurality of wires has substantially the same electrical resistance.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: May 21, 2013
    Assignee: International Business Machines Corporation
    Inventors: Raschid J. Bezama, Timothy H. Daubenspeck, Gary LaFontant, Ian D. Melville, Ekta Misra, George J. Scott, Krystyna W. Semkow, Timothy D. Sullivan, Robin A. Susko, Thomas A. Wassick, Xiaojin Wei, Steven L. Wright
  • Publication number: 20120292779
    Abstract: A semiconductor structure which includes a plurality of stacked semiconductor chips in a three dimensional configuration. There is a first semiconductor chip in contact with a second semiconductor chip. The first semiconductor chip includes a through silicon via (TSV) extending through the first semiconductor chip; an electrically conducting pad at a surface of the first semiconductor chip, the TSV terminating in contact at a first side of the electrically conducting pad; a passivation layer covering the electrically conducting pad, the passivation layer having a plurality of openings; and a plurality of electrically conducting structures formed in the plurality of openings and in contact with a second side of the electrically conducting pad, the contact of the plurality of electrically conducting structures with the electrically conducting pad being offset with respect to the contact of the TSV with the electrically conducting pad.
    Type: Application
    Filed: May 19, 2011
    Publication date: November 22, 2012
    Applicant: International Business Machines Corporation
    Inventors: MARIO J. INTERRANTE, Gary LaFontant, Michael J. Shapiro, Thomas A. Wassick, Bucknell C. Webb